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ABSTRACT

This thesis is concerned with inertial navigation of vehicles
during short time intervals for which the predominant accelerations are
non-gravitational. Due to the high time correlations of random errors
associated with an inertial measurement unit, it is possible to assume
accelerometer measurements which are perfect except for random
constant error coefficients. Statistical estimation theory is applied
to navigation systems with assumed perfect measurements and the
estimation errors associated with such a statistical navigation system
are compared with errors derived from conventional deterministic
navigation systems.

The design and effectiveness of the statistical navigation system
depend on the number of independent white noise elements driving the
non-gravitational or specific force accelerations. If this number is equal
to or less than the number of measurements observed, the estimation
errors of the statistical system are shown to asymptotically approach
zero.

Development of a statistical navigation system for an Apollo
re-entry mission is presented. The nature of the sensitivity of ac-
celeration variations to some components of white noise suggests a
statistical navigation system containing two independent filters which
are employed alternately as the vehicle roll angle is altered. Such
a system is shown to be effective in immediately reducing initial
estimation errors. A simplified single filtering navigation system
is obtained with the inclusion of arbitrary additive.white noise in the
measurements. This system reveals a more continuous but equally
dramatic reduction of initial estimation errors. Both systems show
a marked improvement in navigation accuracy over the conventional
deterministic approach.
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CHAPTER I

INT RODUC TION

Steering or controlling a vehicle to some prescribed des-

tination can be performed by the operation, in cascade, of four

subsystems:

1. A measurement system which gathers information describing

the state of the vehicle.

2. A navigation system which processes the measurements to

determine the present location and course of the vehicle.

3. A guidance system which compares the present course with

one which will intersect the destination and generates maneu-

ver commands to steer the vehicle on the intersecting course.

4. A control system which controls the vehicle to comply with

the commands received from the guidance system.

This thesis is concerned with the gathering and processing of

information to determine the present state of the vehicle, i.e., the

measurement and navigation systems. The form of the navigation

system depends on the type of information received from the measure-

ment system, which, in turn, depends on the surrounding environment

in which the vehicle is traveling. For example, travel on land allows

a measurement system to observe recognizable land sites or road

markings which are used by the navigator through comparison with

reference markings on a map to determine position of the vehicle.
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Without the availability of landmarks, the measurement system must

depend upon other sources of information within the environment.

These sources could include radiation links through radar to known

positions, or sightings of celestial bodies and constellations. Celes-

tial sightings were used extensively in early sea navigation and are

employed today for navigation in "free fall" space flight.

The development of inertial measurement devices provided a

new source of information to navigation systems. The natural property

of the inertial measurement unit (IMU) to maintain a known reference

orientation and to sense specific force accelerations allows for a self

contained navigation system aboard vehicles such as ships, aircraft

and spacecraft operating in an environment of known gravitational field.

Vehicle position and velocity can be obtained through integration of the

total acceleration received from the IMU and from knowledge of the

gravitational acceleration acting on the vehicle.

Associated with any measurement system is an inherent error

or uncertainty which forbids the exact determination of position by

the navigator. Additional errors might be introduced by the navigator

itself while converting the measurement data into vehicle position and

velocity components. In the case of inertial navigation systems, initial

condition uncertainties play a large role in navigation errors through-

out the mission.

If the navigator employs only the measurement data in deter-

mining the state of the vehicle, it must be content to accept these

errors. However, if the navigator has available any additional infor-

mation concerning the environment in which the vehicle is traveling,



the dynamics of the vehicle itself, and/or the characteristics of the

measurement system, which would allow it to predict what the meas-

urement should be, it could compare this prediction with the actual

measurement. If the predicted and measured values do not agree, then

the navigator could choose some value in between the two depending

upon which value it considered more likely to be correct.

This method of obtaining more accurate estimates of vehicle

position has been used quite extensively in the past. Inertial naviga-

tion systems aboard vehicles moving at low speeds near the surface

of the earth recognize the fact that the primary specific force acting

on the vehicle is the gravitational force directed normal to the earth's

surface, and that the earth rotates at a known constant rate. Hence,

by forcing the IMU platform to maintain a level position normal to the

measured specific force and to rotate at the earth rate, improved

estimates could be made of the vehicles latitude and azimuth through

comparison of the orientation of this platform with a fixed inertial

coordinate frame.

A more systematic method of improving the knowledge of the

state of the vehicle is found through the use of optimal estimation

theory in which the entire system is treated in a statistical sense.

Statistical estimation theory was first developed by Wiener (1) and

later set into a more general "state space" context by Kalman. (2}

This theory uses knowledge of the vehicle dynamics, as well as the

statistical properties of random forcing functions inherent in the

vehicle dynamics and measurement system, to design a filter whose

output is an estimate of the vehicle position and velocity. The
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mathematical framework of the filter was presented in an historic

(3)
paper by Kalman and Bucy.

Many persons have studied navigation systems incorporating

statistical estimation theory. Such navigation systems first became

operational through the Minivar Program (4)(5) for orbit prediction of

earth satellites. Navigation aboard a circumlunar vehicle was studied

by Smith, et. al. (6) and later by Farrell (7} for measurements from

radar and celestial data.

An independent derivation of statistical estimation theory was

provided by Battin (8} for achieving "maximum likelihood" navigation

from discrete celestial sightings during midcourse space flight.

Until recently, statistical estimation was employed only to

"free fall" space trajectories for which the vehicle dynamics could be

modeled quite accurately from knowledge of the surrounding gravita-

tional fields. Its application was carried to navigation of vehicles near

or on the earth by Fagin (9) and Brown and Friest (10) using position

fixes and velocity log data and later by Brock (1 1 ) with the use of inertial

measurement data. These studies assumed the primary specific force

on the vehicle to be the negative of the gravitational force and the

primary motion of the vehicle with respect to an inertial frame to be

the earth's rotation. Hence these studies were applicable to vehicles

maintaining essentially constant low speed near the earth.

Significantly new and different navigation problems arise when

the vehicle is accelerated primarily by forces other than gravitational

or apparent forces. This phase of high acceleration is usually a small

portion of an overall mission such as ascent, descent, orbital change,



or re-entry of a space craft or gross maneuvers of a sea-going vessel.

Hence it is usually of short time duration and the primary forces are

propulsive, aerodynamic or hydrodynamic.

Navigation during these maneuvers has been accomplished in

the past through basically deterministic methods with IMU measure-

ments or radar tracking data. The high accuracy of inertial meas-

urement devices provides excellent knowledge of the specific force

accelerations. The accuracy of the navigation, however, is greatly

impaired by the uncertainty in initial knowledge of the state of the

vehicle, which cannot be corrected by deterministic integration of the

accelerations. Radar data provides considerable aid in reducing these

uncertainties but is limited by its availability during some mission

phases.

Few studies have been directed towards the extension of

statistical estimation theory to navigation during these high accel-

eration maneuvers. Wagner (12} has investigated the employment of

the Kalman-Bucy filter for accurate prediction of re-entry orbits with

the use of measurements from both on-board inertial accelerometers

and ground-based tracking stations. In this study the random measure-

ment errors for 'both systems were assumed to be additive white noise.

It has been found that the white noise assumption is quite valid in

describing radar measurement uncertainties. However, intensive

study of inertial measurement systems reveal that the random error

coefficients describing errors inherent in these systems are highly

correlated in time and hence, during relatively short intervals of time,

could better be represented as random constants.



The development of statistical estimation theory for measure-

ments containing colored noise by Bryson and Johansen (13) and by

Deyst (14) has paved the way for study of navigation systems in which

the information received is essentially perfect. The application of this

perfect measurement estimation theory could be applied in conjunction

with the inertial measurement system to provide for a more realistic

and accurate navigation system during periods of finite specific force

accelerations. This is the basis for the present research described

within this thesis,

1.1 Thesis Objective

This thesis develops a statistical navigation system to be em-

ployed with an inertial measurement unit for vehicles encountering

accelerations predominately due to non-gravitational specific forces,

and shows the applicability of such navigation systems to a represent-

ative mission phase of atmospheric re-entry.

Chapter II contains the theoretical development of the naviga-

tion system which is statistical in nature and a comparison with the

conventional (deterministic) system. The application of statistical

inertial navigation to atmospheric re-entry is illustrated in Chapter

III. Chapter IV presents numerical results obtained from a computer

simulation of a typical Apollo re-entry mission and shows a marked

improvement in accuracy of the statistical navigator over the conven-

tional navigation scheme. Conclusions and recommendations derived

from this research are discussed in Chapter V.



CHAPTER II

DEVELOPMENT OF INERTIAL NAVIGATION SYSTEMS

This chapter develops an inertial navigation system for

vehicles acted upon by specific forces over short periods of time.

The estimation errors associated with a deterministic and statistical

navigation system are compared.

Within this chapter, navigation will be considered only with re-

spect to an inertial reference frame. This allows the presentation of

meaningful results without the complexities introduced by transforma-

tion to an accelerating or rotating frame of reference. The application

of re-entry navigation considered in Chapter III will study navigation

in a non-inertial coordinate system.

Navigation will also be confined to the determination of position

and velocity of a vehicle with the vehicle assumed as a mass particle.

The attitude of the vehicle will not be considered in this thesis.

The development of an inertial navigation system presupposes

knowledge of the operation of an inertial measurement unit. Hence,

we begin with a brief description and error analysis of this unit.

2.1 Description of IMU

An inertial measurement unit (IMU) is composed of acceler-

orneters mounted orthogonally on a platform which is controlled by

gyros to maintain a fixed orientation in inertial space.
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An accelerometer may be viewed, for our present purpose, as

a linear mass-spring combination. When subjected to an external force,

the mass will be deflected by an amount proportional to the magnitude of

the acceleration caused by this force. However, an accelerometer will

not give an indication of the total acceleration of the vehicle, but rather

the difference between the true acceleration and the field or apparent

force accelerations. This difference is called the acceleration due to

the specific forces acting on the vehicle, e.g.,

and bouyant forces.

The errors in an IMU may be attributed

propulsive, aerodynamic,

to two independent

sources: misalignment of the stable platform from the expected true

inertial orientation and errors in accelerometer readings. Misalign-

ment is caused by drifting of the gyros from their preset orientation

and by an initial misalignment of the stable platform. Gyro drift rate,

according to Laning (15}, is well approximated by a quadratic depend-

ence on the specific force acceleration and may be written as

+ T + T (2 1)
i = Wdo. Wdl. asf asf Wd. asf

1 I 1

where &.
1

is the drift angle of the i th gyro element,

is the vector specific force acceleration,asf

Wdo, Wdl, and W d are, respectively, the bias,

acceleration-sensitive, and acceleration

squared-sensitive error coefficients for

the ith gyro element,

and where Ai(t o) is the initial misalignment angle about the

ith gyro input axis.
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If we consider the drift component of each gyro as a component

of a three dimensional drift vector, A, we may determine the error in

measured acceleration due to the stable platform misalignment as the

vector product of A with the measured acceleration vector

5agyro = asf x A

or, simply as

5agyro : D 15_ (2.2)

The error in accelerometer reading is also well approximated

by a quadratic dependence on the specific force acceleration as

= + T + T
5aaccel.. Wao" _Wal" _asf asf Wa. asf (2.3)

1 1 1 1

where 5aaccel.. is the error in the i th accelerometer and where
1

and W are the error coefficients relating the dependenceWao ' -Wal' a

of this error on the measured accelerations.

The total error in acceleration information received from the

IMU may then be described as

5_ma = D 1A_ + 5aaccel. (2.4)

All of the error coefficients, Wdo ... W a are, in general,

random variables with non-zero mean values. However, with ade-

quate testing, calibration, and compensation, it is possible to make

the mean values zero.
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The statistical properties of these error coefficients have been

the concern of much research during the past several years! 161{17){18){191

These studies have shown that the error coefficients Wdo, Wdl , and Wd

may be considered as random constants over time periods of less than

one to three hours.

If we consider all the error coefficients (Wdo ... Wa.) contained
i

as individual elements in a random constant vector, _ {the inclusion of

all 13 coefficients each for three gyros and three accelerometers would

imply 78 elements in the _ vector I, equations (2.31 and (2. l) for accel-

erometer error and drift rate may then be written as linear combina-

tions of the vector _ as

5 _aaccel.

i

= D3_

= D2_

(2. s)

where the matrices D 2 and D 3 would each be of dimension 3x78 and

would take the form

i- ] o o o o o)D2 = O [ ] O O O O
O O [ 7 O O O

O O O E ] O O \)D 3 : O O O O [ ] O

o o o o o [ ]

with each O being a 13 element row vector of zeros and [

13 element row vector of functions of a_sf.

] being a
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With the aid of a new vector

! }b =

R

b defined as

(z. 6)

we may then represent the IMU acceleration error, (2.4), as.

6a = E b (2.7)
-m

where the matrix, E, is defined as

[']E = DI' , D g
I

(z.8)

and where

= D b
O_

{2. 9)

The matrices D O through D 3 depend upon the specific force accelera-

tion time histories of the vehicle from initial alignment of the platform.

The vector b will thus be a random vector with assumed known statis-

tical characteristics represented by the mean

e [b(t)] = o

and by the covariance matrix

Pb(t) = 8 [b(t) b_(t) T3 (2.10)
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2.2 Deterministic Navigation with IMU Measurements

The equations of motion of a vehicle considered as a mass

particle may be obtained from Newton's laws as

V = a

The total acceleration, a,

(2.11)

of a vehicle, is composed of specific force

accelerations, as f, measured by the IMU, and of gravitational accel-

erations, g. The specific force accelerations will, in general, be a

function of the position and velocity of the vehicle, and time. Since no

information is received from the measurements concerning the gravi-

tational acceleration, this term must be derived from prior knowledge

of the gravitational field and from the present estimate of the vehicle's

position in this field. If such knowledge is available, determination of

vehicle position and velocity may be obtained as the solution of the

differential equations

v (t) = a (v, r, t) + g(r)
-- --m

r (t) = v(t)

(2.12)

where _T (t) and --__v(t)represent the estimate of the vehicle position and

velocity at time, t, and a is the acceleration information received-m

from the IMU.

In order to study the errors in this deterministic navigation

scheme, we consider linear perturbations about a nominal path of the

vehicle with the use of a first order Taylor series expansion (Hansen,

et. al. , (20) show that such linearization gives acceptable results even
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for a highly non-linear re-entry trajectory}. The actual path of the

vehicle may thus be represented as

v(t) = v (t)+ 5v(t)
i _O I

_rCt) = Lo(t) + *_rCt)

where the subscript o refers to the nominal path and 5r and 5v
m

describe small perturbations about the nominal path which we consider

as random variables. In the same manner, we may describe our esti-

mate of the actual path as

With the linearity assumption, we may express the differential equations

of the variations in actual position and velocity as

5v_ = 5a_ = 5asf(V , r, t) + 5g (r)

5r = 5v

We will assume that the model of the gravitational field is suf-

ficiently accurate to describe the effects of earth oblateness and of the

gravitational fields of other nearby celestial bodies. (The result of

intentionally ignoring these effects is deterministic in nature and could

be examined independent of the present statistical analysis. ) Variations

from the known nominal gravitational accelerations will then be caused

by random gravitational anomalies as well as to the random perturba-

tions in the radial position, 5 r, within the known gravitational field.
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An investigation of the random gravitational anomalies might allow

us to create a representative colored noise model of these variations,

which, in turn, could be obtained from white noise through the use of

shaping filter techniques. For purposes of simplicity, however, we

will cautiously consider these random variations to be of such high

frequency that they could be represented as white noise. With these

assumptions, then, we can express 5g as

ag
5g(t) = _ 5r + u = F 5r + u (2.13)

8r - -g - -g

where u is white noise with
-g

e[u ] =o
_g

_ _ )T ] Qg(t) 5 (t-v) (2 14)and _ [ u g(t) u g(r =

Here _ [ ] represents the expected value or ensemble average of [ ],

and 5(t-v) is the Dirac delta function.

The types of specific forces encountered by vehicles within this

study are primarily propulsive or aerodynamic forces and are normally

under some control by the vehicle. Variations in the specific force

accelerations, thus, will be due to variations in the control implemen-

tation from the nominal prescribed values. If the specific forces are

also dependent upon the state of the vehicle, additional variations will

be realized due to the random perturbations of the position and velocity.

With a caution similar to that discussed above, we assume the control

implementation variations to be a linear function of independent white
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noise elements. Hence we express the total variation in a__sf as

_asf aasf
- 5v + 5r + Gfuf5 as f _)v - ar -

or 5as f = F v 5v + F r 5r + Gfuf {2. 15)

where g [ uf{t) ] = O

and _ [ uf(t) u_f(T)T ] = Off(t)5 (t-T) (Z. 16)

The linearized perturbations of the actual system may then be

expressed as

5v = FvSV + (Fr+F) 5r + u + Cfuf.... g

69 = 5v (z.17)

Perturbations in our estimate of the position and velocity may

be derived in like manner as

5v = 5asf(V, r,t)

5r = 5v

+ 6a + _ (_)
--m

(z.18)

where 5_asf and 5_ma are expressed by (2.15) and (2.4) and where

5g -- r 5r
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We note the absence of the white noise in the gravitational accelera-

tion, u here due to the deterministic computation of g by the
--g '

navigation system. Hence, we obtain

8v = FvSV + FrSr + F 8_ + Gfuf + 5a
..... m

The errors in estimation of the actual position and velocity

may be expressed as the differences

e = 8v - 5v
--V -- --

e = 5r - 8r
--r -- --

whose derivatives may be obtained from (2.7), (2. 17), and (2. 19) as

= Fe + u
-v -r -g

- Eb

= e (2.2o)
--r --v

In terms of the total estimation error, e, defined as

ev1e_ = er

these equations become

e = Be + E'b + _ u (2.21)
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where the matrices B, E', and G are defined as

S __

-f]_j, E,-- : , m_,=

and where O and I are the null and identity matrices, respectively.

We assume the mean value of the random vector, e, to be zero

and define the covariance matrix of e to be

P(t) = _ [e(t) e(t)T] (2.22)

We now have two sets of linear differential equations (2.9} and (2.21)

which define the random errors associated with a deterministic naviga-

tion system. Through combining these two sets into one set, we may

derive the differential equation for the statistical parameters of these

errors as follows:

Define the augmented vector

{eic g

and its correlation matrix

(t) = _ [c(t) c(t)T] (2.23)

From (2.9) and (2.21), we obtain

!

(2.24)
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from which follows

P{t) : 8 [_ e T + ¢ _T]

DoJ P + p :_ -LO

+ [-_-] Qg [ GTio] (2.25)

Noting that

P (t)
P(t) i Peb(t) tP:b(t)i Pb (t)

where Peb(t) = _ [ e(t) b__(t) T ] , (2.26)

we may write the differential equations for the individual covariance

matrices, P' Peb' andPb, as

_(t) : B 1_ + ]_ B T + _ Qg _T

T + E,T
+ E'Peb Peb (2.27)

T + E'P (2.28)Peb(t) = B Peb + PebDo b

PbCt) = DoP b + PbDo T (2.29)

These equations have a one-way coupling only so they may be

solved in cascade, i.e., Pb(t) may be found from (2.29) and used as
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input to find T'eb(t) from (2.28), which in turn is used as input to find

P(t) from (2.27). We note that the initial value of Pb describes the

statistical properties of the gyro misalignment and of the gyro accel-

erometer error coefficients.

2.3 Statistical Navigation with IMU Measurements

In the deterministic navigation scheme described above, it was

necessary to have a knowledge of the gravitational forces acting on the

vehicle. The use of this knowledge, together with the measurements

of the specific force accelerations permitted the estimation of position

and velocity through integration from known initial conditions.

The error analysis of this scheme, however, required more

information than was required in the navigation equations alone. In

particular, we assumed that the perturbations in acceleration can be

approximated by white noise having zero mean and known correlation,

and that the measurement errors are random constants. If these assum-

tions are valid for any particular mission and reasonable statistical data

is available, then we are able to obtain a good estimation of the naviga-

tion errors for that mission.

We now pose the obvious question: If such assumptions are valid

and we have available the statistical data for a particular mission, is it

possible to incorporate this additional information directly into the navi-

gation system in order to reduce the inherent error in the system? The

answer to this question is yes. The method of utilizing the additional

information in an optimal manner is the subject of statistical estimation

theory.
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In practice, the use of statistical estimation theory in naviga-

tion systems requires that the navigator have available both an actual

model (usually nonlinear) of the dynamics of the vehicle and a linear

model describing first order perturbations about the nominal path.

The position and velocity of the vehicle are determined as the sum of

the nominal values (obtained from the nonlinear model) and the best

estimate of the perturbations from nominal. The best estimate of

the perturbations are, in turn, obtained through optimally filtering

the measurements with the use of the known statistical properties of

the measurement and acceleration random errors.

The design of the filter is discussed in the next section assum-

ing perfect measurements. Later it will be shown how the design can

be modified to account for random measurement errors.

2.3.1 Optimal Filter for Perfect Measurements

In order to provide the background for optimal estimation of

systems having perfect measurements, we first review the results of

Kalman (2) for noisy measurements. We assume the dynamics of our

linear model to be described by the random process

(t) = Fx + Gu (2.30)

where x(t) is a vector of random variables describing the state of the

system with initial conditions

e Ix(to)3 --o

and e [x(t o) x(to)T] = P(to)
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and u (t) is assumed to be independent white noise with mean

e Eult)] : 0

and covariance

e [u(t) uir) T ] = Qit) 6(t-r) (z.31)

where Q(t) is nonsingular.

The state of the system is observed through measurements,

z (t), which are related to the state by the linear function

z(t) = H(t) xit) + qit) (2.32)

where q it) is assumed white noise in the measurements with zero

mean and covariance

e E_(t)_ff)T] = R(t) 5(t-r) (2.33)

We assume that there is correlation between the process noise,

u it), and the measurement noise, _(t), and that it is adequately de-

scribed by the correlation matrix

e [u(t)_ff)T] = Sit) 5(t-r) (2.34)

We can determine an estimate of xit) through solution of the differential

equation

r_ _ N

x = Fx + K (z -Hx) i2.35)

where K is a gain matrix which "weights" the difference between the
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actual and predicted measurements.

gains are obtained as

Kalman (z) shows that the optimum

K(t) = (PH T + G S) R -1 (2.36)

where P(t) is the covariance of the error in the estimate of the state x

P(t) = 8 [ (x(t) -_(t)) (x(t) -_(t))T]

and is found through solution of the differential equation

P(t) = F P + P F T + G QG T - K R K T (2.37)

For a perfect measurement system, [l(t) = O in (2.32). The

filter K(t) for this case is undefined since the matrix R is singular and

cannot be inverted. Physically, such an assumption means that some

linear combinations of the state variables are known exactly as soon as

the measurements become available. Hence, it is possible to reduce

the number of state variables to be estimated to only those variables

which are not perfectly inferred from the measurements. Bryson and

Johansen (13) have developed a method of reducing the state which we

briefly review here.

Suppose we have measurements y related to the state through

the relation

Z = C x (Z. 38)

Since __ycontains no white noise, it is reasonable to differentiate y_,

repeatedly if necessary, using the state equations (Z. 30) to eliminate

the appearance of x, until a new signal is obtained which contains
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independent elements of the white process noise, u (t). These final

signals which contain white noise are grouped into a vector z (t); the

elements of y_ and its intermediate time derivatives which are free of

white noise are combined to form a vector x 2. The x 2 vector can

be treated as a linear function of the state x which is known exactly

from the measurements. Thus, we can obtain

x 2 = MzX (2.39)

By defining a complementary vector

x 1 = MlX (2.40)

such that M =

from Xl and x 2 as

is non-singular, we can infer the state x

X ix1/: M -1 -x-2 (2.41)

The vector z

defined as

can be treated as a new measurement with white noise

z = H lx + Du (2.42)

With this new formulation, we can now apply the Kalman filter

to estimate x ICt) as

x I = FllXl + Fizx 2 + K (z' - H x I ) (2.43)



24

where the matrices Fll , F12, and H are found as

IFFII FIZ l

21 F22J

= IVIM -1 + MFM -1 (2.44)

H = H1 M-1 [0I] (2.45)

andwhere z' = z - H1 M-1 [?] x2

The optimal gain is determined as

K = (P1 HT + G1 S) R -1 (2.46)

whe re

G 1 = M 1 G

S = QD T

(2.47)

(2.48)

R = DQD T (2.49)

and where P1 is the covariance of the error in estimate of

Pl(t) = g [x 1 -x 1) (x 1 - Xl )T]

x 1

and is determined through the differential equation

P1 = Fll P1 + P1 FllT + G1QG1T _ KRK T (2.50)

The initial conditions of P1 are obtained as

Pl(to +) = Ml(to) P(to+) Ml(to )T (2.51)
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xl(to+) M l(t o ) P(t o) Mf (t o )

[ M2(to) P(to ) M2(to)T ] -1 Xz(t o) (2.52)

where

P(to+ ) = p(to) - P(to) M 7 (t o ) [M2(t o)

P(to ) M7 (to)]-I M2(to) P(to ) (2.53)

and where P(t o) is the initial covariance of the error in x(t) before

the first measurement has been taken.

Hence, from the estimate of Xl and the direct computation of

x 2, we are able to obtain the best estimate of x(t) from

x (t) = M l(t)
x l(t)

x_2(t)
(2. 54)

with the covariance of error in this estimate as

P (t) :] 1
P(t) = M-l(t) 1 M- (t) T (2.55)

O

The above relations have been extracted from Bryson and

Johansen (13) as a special case of their general treatment of colored

noise in the measurements.

Since the information concerning error in the estimate of the

state is obtained from the covariance matrix, P1 (t), let us investigate

equation (2.50) in light of the sources of this error. The first two

terms on the right hand side of (2.50) relate a linear dependence of
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the errors at time t to the initial errors at time to and upon the

nominal path through the matrix F 11" The final term tends to reduce

the estimation errors through the processing of measurements with K,

while the G1QG 1
T

term is a positive semi-definite forcing function

which will always tend to increase the estimation errors due to the

presence of the process noise.

We note, however, that our newly defined measurements (2.42)

are driven by a linear combination of the same process noise as is

driving the system (2.30) itself. Hence, there should be some reduction

of the forcing term in (2.50) due to the fact that we obtain information

concerning the process noise from the measurements. This premise

is observed analytically by substitution of K into equation (2.50) to

obtain

T +G1Q G TP1 = FllP1 + P1Fll 1

- (p1HT +G1S) R-1 (p1HT +G1S) T

= (Fll - G1SR-1H} P1 +PI(Fll - G1SR-1H)T

_ P1H T R-1HP1 + G1 QG1T - G1S R-1sTG1T (2.56)

From (2.48) and (2.49) we obtain

and

S R -1 = QD T (DQ DT) -1 (2.57)

S R -1 S T = Q D T (DQ DT) -1 DQ (2.58)

so that the total forcing term in I_ 1 becomes
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GI( Q - SR -IS T )Gl T

= GI(Q - QD T (D Q DT) -l

= G l _ G1 T

D Q) G1 T

(2.59)

Since the D matrix describes the linear combination of process

noise elements which is measured exactly by the measurements, z,

we find that this combination of noise elements is eliminated from the

forcing function for P l " This elimination may be shown in a more

rigorous manner if we assume the process noise vector, u, to be of

dimension m and the measurement vector, z, of dimension r. By

definition, the matrices Q and D are of rank m and r, respectively.

If we note that

DQ D T = DQD T - DQD T = O

and that _ is of dimension mxm, then the rank of _ must be less than

or equal to m - r. Hence, the subtraction of S R -l ST from Q in (2.59)

has reduced the number of independent forcing elements by at least r.

We also observe a reduction of the linear coefficients F 11 by

the product G 1S R -I H in (2.56). The physical significance of this re-

duction can better be described when applied to the navigation system

in the next section.

An interesting specialization of the optimal filter for perfect

measurements is the case for which the number of independent obser-

vations in the vector y_(2.38) is greater than or equal to the number

of independent process noise elements in u. Upon defining the new
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measurements, z, by (Z. 42), we find that the D matrix will be of

dimension mxm, of rank m, and hence invertible. For this special

case, we obtain

= Q _ Q D T (DT-1 Q-1 D-I) DQ = O

S R -I = D -I

= H T R -1 + G 1 D -1K P1

If we define

= D -l H (2.60)

-- = D-I D-I =
z z' = H x I + u _ x I + u (2.61)

1_ = FII - G 1 S R -I H = FII - G 1 _ (Z.6Z)

and a new gain matrix as

l_ = Pl _[T Q-I (2.63)

then the estimation equation (2.43) becomes

xI_ : I_ x I + FlzXz + l_ (_- _[_I )+_ _ GI__ (2.64)

and the differential equation for P1 (2.50) reduces to

Pl = l Pl + PI 'T _ KQKT (2.65)

We thus find a total elimination of the positive forcing term

and realize the effect of the process noise only through the reduction
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of the error in estimation of x 1, this reduction being a function of the

inverse of Q. Hence for large expected values of process noise, little

gain in estimation accuracy is achieved, while if IQI is very small,

then a large reduction is observed through this final term. We also

note that, for an observable system the estimation errors of the opti-

mal estimate will asymptotically approach zero.

2.3.2 Navigation with Perfect Measurements

As was suggested above, statistical navigation requires the

navigator to have available a nominal model of the vehicle dynamics

as well as a linear model describing random perturbations about the

nominal path. Both of these models were presented in our discussion

of deterministic navigation systems and are repeated here.

The nonlinear model of the vehicle equations of motion with

respect to an inertial frame of reference is expressed as

V __

-o asf

= v
--O --O

+g_

(2.66)

The random linear perturbations about this nominal path are obtained

from equation (2.17) as

5v_ = F v 5v_ + (Fr+F) 5r_ + Ofuf + U_g

5b = 5v

5asf 5asf
where F = F =

v 5v r 5r

5g
F = __-

5r
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and where uf and u are white noise functions driving the specific--g

force and gravitational accelerations, respectively. We assume uf

and u to have zero means and covariance matrices defined as
-g

[ uf(t) uf(r)T ]

[ Ug(t) Ug(r)T ]

= Qf(t) 5(t-r)

= Qg(t) 5 (t-r)

We also assume that uf and Ug are uncorrelated such that

[ uf(t) Ug(t) T ] = O

In general, the matrices Qf and Qg will be positive semi-

definite at all times. For the present we will further restrict the

matrix Qf through the requirement that GfQfGf T be positive definite

and hence invertible at all times. The effect of removing this re-

striction will be discussed later.

If we define a vector x to represent the linear state perturba-
b

tions as

equation (Z. 17) can be written as

x = Fx + Gu (2.67)

We will show lat_r that if this condition is satisfied, the matrix

product GfQfGf--forms the measurement noise correlation

matrix, R.
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whe re

F = (Fr G = f

0

and

U _-

From the above definitions we can obtain the matrix Q to represent

the process noise covariance as

Measurements are received from the IMU concerning the speci-

fic force accelerations encountered by the vehicle. Linear perturba-

tions of these measurements with the assumption of a perfect IMU are

obtained from (2.15) as

= Gf_Y = 5_asf Fv 5_v + Fr 5_r + uf (2.68)

With the assumption that GfQfGf T is non-singular, the measurement

vector y will contain independent white noise components without the

necessity of differentiation. Hence,

z = __y = Hx + Du (2.69)

where

E 'r] LO'OI= IF and D = l
H vl fl
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Since there are no state variables perfectly inferred from the meas-

urements, x2 and M 2 (in the notation of section 2.3. l) are undefined,

and M 1 = M = I. The estimation of x(t) may be obtained from (2.43)

as

x = F x + K (z - Hx) (2.70)

where K -- (P H T + G S) R -1

From (2.48) and (2.49), we find

s 1
GS =

R = D Q D T = GfQfG T

so that

K = p HTR-1 + _-I- 1

The differential equation for P is obtained from (2.50) as

= FP + P F T + GQG T - KRK T

From the definitions of G, Q, R, and K above, the final two

terms in this equation may be obtained as
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GQG T = [(GfQfGfTo + Qg) :1

Thus,

K RK T = P H T R -1 HP + pHT[ I

GfQfGf T

O

= BP + P B T + [:g :] -pHTR-1HP (2.71)

whe re

B = F

Through the above definition of K, it is possible to reduce the estima-

tion equation (2.70) to

.5 ,._ _ Z I HTR_ 1 ._x = Bx + -O- + P (z-Hx) (2.72)

It is now possible to formulate the statistical navigation system

with the use of the nonlinear model (2.66) and the linear estimation

model (2.72). The solution of equations (2.66) with known initial con-

ditions allows the same result as is obtained through the deterministic

navigation scheme (2.12). The navigation accuracy is increased,

however, through simultaneous solution of equations (2.72) and (2.71)

with initial conditions

o) = o

P(to) = [x(t o) x_(to)T]
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and with known covariance matrices Qf and Qg.

of position and velocity is then obtained as

Vo(t)

ro(t)
+ x(t)

The optimal estimate

The statistical properties of the error resulting from this esti-

mation scheme are found directly through the covariance matrix

whe re

_ )TP(t) = _ I e(t) e(t "1

.._ v(t)
e(t) : -
- r(t)

T
Let us now consider the assumption that the product GfQfGf"

remains non-singular at all times. In general, this assumption implies

that the number of independent noise elements which produce random

variations in the specific force accelerations is greater than or equal

to the number of independent components of the specific force accelera-

tion vector, asf. Since we have assumed that the measurement system

observes the same asf as employed in the nominal model (2.66), the

linear measurement perturbations y defined by equation (2.68), then

also contain independent white noise elements.

If the assumption is not valid at any time, i.e., if GfQfGf T

becomes positive semi-definite, then at least one element within the

measurement vector contains dependent (or zero) white noise, and

hence may be considered a perfect measurement. Recognizing this

fact, it is necessary to differentiate this measurement as discussed
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in section 2.3.1 until an independent white noise element is obtained.

This element will necessarily be some linear combination of the noise

vector u .
-g

The newly defined measurement may be expressed by the

equation

z' = H'x + D' u

where D' Q D 'T is non-singular.

Since a linear combination of the elements of the state x is im-

plied by the perfect measurement(s), it will be necessary to reduce the

state estimation equations by the Bryson-Johansen method described in

the previous section and to employ the estimation equations (2.39) thru

(2.55).

It is now possible to state come general conclusions concerning

the statistical inertial navigation scheme presented here with the basic

assumption that the measurements y provide perfect duplication of the

variation in the entire specific force acceleration vector asf, i.e., that

equation (2.68) is representative of the variation in nominal information

received from the IMU. From (2.68), we find that the total process

noise derived from the specific force accelerations uf is perfectly in-

ferred from the measurements. Also, we note that the asf coefficient

matrices, F and F which are included as coefficients in the linear
v r'

system through the matrix F in (2.67), are exactly duplicated in the

measurements (2.68). Due to the perfect inference of these quantities

by the measurements, we find that the result of applying statistical

estimation theory to the linear system (2.67) is to remove these
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quantities from the system itself and to employ them only in the for-

mulation of the filter. This may be stated in a more formal manner

through the differential equation of the estimation error covariance

matrix, P, which may be written in general as

= B'P + PB 'T+

The linear coefficients, B',

G' QgG 'T - K' R' K 'T (Z.73)

will contain only those elements

derived from linear perturbations in the non-specific force accelera-

tions. The positive forcing term, G' Qg G 'T, will, in like manner,

contain only linear combinations of the noise components driving the

non-specific force accelerations (if the matrix product GfQfGf T is

singular, then'the elements of Ug accumulated through differentiation

of the perfect measurement(s) will be removed from this forcing term

and included in the R' matrix).

The final term K' R' K 'T is a positive semi-definite matrix

which will tend to reduce the mean squared estimation errors. The

covariance matrix R' as well as the gains K' will contain all of the ele-

ments of Qf plus a linear combination of the elements of Qg obtained

through differentiation of the measurements. The matrix K' will con-

tain the coefficient matrices, F and F , as well as other terms which
v r

may be obtained from the necessity of measurement differentiation.

Another significant conclusion can be derived from study of the

optimal filter gains defined by (2.36) as

K = (PH T + GS) R -1

-1
We have already noted the effect of the cross-correlation term GS R
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in eliminating specific force acceleration dependent coefficients and

noise components from the matrix F and the positive forcing term

G Q G T. The remainder of the filter gains, consisting of the product

P H T R -1, is thus employed to reduce the magnitude of the navigation

errors. The physical basis of this reduction is that the navigator is

able to discern some information concerning the variables being esti-

mated from the correlation of the measurements with variations in

these variables. This correlation is found directly through the matrix

H, or more basically through the partial derivative matrices F v and

F r. Hence we may conclude that if the specific forces acting on the

vehicle are in no way dependent upon the position and velocity of the

vehicle, then the matrix H and, in turn, the gain K will be identically

zero and no advantage is realized in the statistical filtering navigation

over the deterministic navigation scheme.

2.3.3 Inclusion of Measurement Errors

Thus far, we have considered optimal statistical navigation for

perfect inertial measurements. We now study the effects of including

the errors associated with the IMU measurements.

In section Z. I, it was pointed out that sufficient evidence has

been found, through studies of IMU systems, to validate the assumption

of random constant error coefficients in the IMU over short periods of

time. With this assumption, it was possible to formulate the errors in

sensed acceleration by the IMU as

5a = Eb
-m

where 6 = D b
O_
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and where the matrices E and D are defined by equations (2.8} and
O

C2.9). The vector b is a random vector defined by (2.6} containing the

gyro drift components and the gyro and accelerometer error coefficients.

It is assumed to have a mean value of O and a covariance matrix Pb(t)

defined by (2.10}. The effect of including these measurement errors

into the linear system is seen through adding 5 a to the measurements-m

(2.68} to give

= = F 5v+F 5r+Gfuf+Eb (2.74)Y 5asf+Sam v -- r --

In order to include the measurement errors in the navigation

scheme, it would be necessary to include the elements of b as addi-

tional state variables to be estimated. To realize this, we would define

an augmented state vector X as

6v_
X = 5r

b

From (2.9) and (2.17) we obtain the differential equation for X as

= FX+ Gu

whe re

IO F +r :1

v r

F = O G

O

and U

uf

Ug
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N

Z

If we assume GfQfGf T

may be defined as

to be non-singular, the measurements

x " HX + Du (2.75)

where

H = F D :
V r

The optimal gain for this augmented system is now obtained as

.... R-1K = (P H T + GS)

where S = Q D T

and = 8 [(X- X) (X- ._)T]

The augmented random vector

X = FX + K (z-HX)

X (t) could be estimated as

or as

(2.76)

and the differential equation for P would be derived as

[°o°• "Qg
...... R-I_P = BP + p B T _ p_T HP + O

O

(2.77)
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where

IoB = I O , R =

O

Estimation of the entire augmented vector X would indeed pro-

vide us with the optimal navigation system in the sense of maximum

accuracy in estimation. Such a navigation system would be employing

every available fragment of information concerning the vehicle dynamics

and measurement system and the random noise components affecting

them.

As noted in section 2.1, however, the b vector could contain

as many as 81 elements. Adding to this the six-dimensional x vector,

the navigator would conceivably be called upon to estimate up to 87

individual state variable variations. The estimate of this state would,

in turn, require the simultaneous integration of a total of 7743 variables

according to equations (2.66), (2.9), (2.76), and (2.77). This number

could be reduced considerably due to the fact that many of the error

coefficients within the b vector have an insignificant effect upon the

actual IMU errors and thus could be eliminated. But, even if the size

of the b vector were reduced by such elimination to half its size, the

navigator would still be burdened with a large quantity of numerical

integration.

It is because of this insurmountable computation time that the

designer of a statistical navigation system must be satisfied with a sub-

optimal system, that is, one which does not utilize all of the information

available and hence does not allow a true minimum error in estimation.
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The size of the state vector to be estimated and employed in the navi-

gation system will be determined through the individual designer's

criteria in considering the tradeoffs between navigation accuracy and

system complexity.

The errors introduced by not estimating any elements of the

b vector may be found by adding the measurement error equations de-

veloped in section 2.2 for the deterministic system to the equation for

covariance of the estimation errors determined for the filtering system.

The covariance matrix of the actual estimation errors would then be

found as the solution of the equation

1_ = FP + P F T + GQG T - KRK T

+ E' T + E,T
Peb Peb {2.78)

where the matrix K is the same as employed in the estimation for

perfect measurements and Peb is obtained from solution of equations

(2.28) and (2.29).

2.4 Comparison of Deterministic and

Statistical Navigation Schemes

There are several criteria upon which we may base a compar-

ison of the two inertial navigation schemes presented here. Among

these, the most important criteria would be navigation accuracy and

system p ractic ability.

A quantitative comparison of navigation accuracy could be ob-

tained through solution of the error covariance equations associated

with each scheme with given initialconditions along a specified nominal
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path. The differential equation for the covariance matrix correspond-

ing to the deterministic navigation scheme is given in equation (2.27)

as

• - T (2.79)
P = BP + PB T + _]Qg_T + E,Pe J + PebE,

The first two terms in this equation show the dependence of the errors

upon the initial errors and upon the non-specific force variations along

the path while the third term reveals the positive linear dependence upon

white noise in the non-specific force accelerations. The measurement

errors are added through the final two terms.

The form of the error covariance differential equation for the

statistical navigation scheme will depend upon the number of state vari-

ables to be estimated and the characteristics of the process noise driving

the specific force acceleration perturbations. We will assume for the

present that the statistical navigator assumes perfect measurements and

that the matrix product GfQfGf T is non-singular. Then the navigation

errors for this navigator may be obtained from equations (2.78) and

(2.71) as

= BP + PB T + g + E'Peb

+ Peb E'T - P H T R -1 H P (2.80)

We note that the first five terms in (2.80) are identical to those in (2.79)

if P is replaced by P. The final term in (2.80) is a positive semi-definite

quantity which is subtracted from the differential equation for P. Thus,
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we are able to show a clear reduction of navigation errors through the

statistical navigation scheme ifthe H matrix is not identically zero. It

can also be shown through study of equation (2.77) that the only effect

of estimating some of the elements of the measurement error vector b

in addition to the position and velocity variations would be to increase

the size of the filter term and thus achieve even better accuracy.

The practicability of the statistical navigation scheme would

have to be investigated in light of both the gain in accuracy over the

deterministic scheme and the availability of on-board computer time

and storage capacity. As noted above, no gain in navigation accuracy

can be realized if the matrix H, describing the correlation between

the specific force accelerations and the parameters being estimated,

is zero. Such an effect is observed in attempting to navigate under the

accelerating forces of propulsive thrust. The magnitude and direction

of the thrust vector are controlled through commands from the guidance

system and are independent of the actual position and velocity of the

vehicle. Because of this independence, it would be impossible to

improve the estimate of position and velocity obtained from the deter-

ministic inertial navigation system through the statistical estimation

techniques (using acceleration measurement data only) without estimating

elements of the measurement error coefficients, b.

Aerodynamic forces, however, are found to depend upon both

the position and relative velocity of the vehicle. Due to this dependence,

the navigation accuracy would be improved with the use of statistical

navigation.
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Computer requirements for the statistical navigation scheme

could be evaluated from consideration of the estimation equations

presented in section 2.3. For estimation of n state variables, it is

apparent that the solution of n(n+l) differential equations is required

in addition to the integration of the n nominal equations necessary in

the deterministic scheme. This additional burden on the computer may

increase numerical computation times to exceed the real time limit. If

a predetermined nominal path is to be followed, it may be permissible

to store a large portion of information corresponding to this nominal

path. This would eliminate real time integration of the covariance

matrix P and computation of the filter K but only through an increased

requirement for storage capacity.

A more detailed comparison of the two navigation schemes is

presented in the re-entry application which follows.
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CHAPTER III

DEVELOPMENT OF STATISTICAL INERTIAL

NAVIGATION FOR APOLLO RE-ENTRY

The final phase of the Apollo manned lunar landing mission will

be the re-entry of the command module through the earth's atmosphere

to a predetermined landing site. Prior to entering the atmosphere, the

command module will be directed into a safe entry corridor and aligned

to an aerodynamically stable attitude which allows a small lifting force

on the vehicle. A limited amount of re-entry path control is achieved

by rolling the vehicle to change the direction of this lift force. Upon

entering the atmosphere, the guidance system must steer the vehicle

to the desired landing point with high accuracy while avoiding excessive

accelerations and possible skip out with supercircular velocity. If the

prescribed landing conditions require a long range to be achieved by the

vehicle after entry, it will usually be necessary to perform a controlled

skip out of the atmosphere through a sub-orbital ballistic flight as shown

in Figure 3.1. Lickly, et. al. (21) show that the errors in terminal range

are highly sensitive to errors in guiding the vehicle during initialization

of this skip maneuver.

Guidance accuracy can be no greater than the accuracy of the

navigation information supplied to the guidance system. With initial

conditions of the vehicle position and velocity obtained from the mid-

course navigator prior to re-entry, the acceleration data obtained
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from an IMU during re-entry could be used to determine the present

state of the vehicle. With the conventional deterministic integration

of these accelerations, any uncertainties in the initial values received

from the midcourse system will be carried through the entire re-entry

phase. Since the aerodynamic forces acting on the vehicle during re-

entry are known to depend on the velocity and the atmospheric density,

it would be possible to reduce the effects of these initial condition

errors with the incorporation of statistical estimation theory into the

navigation s cheme.

This chapter will employ the statistical estimation theory

developed in Chapter II in the design of an inertial navigation system

for the re-entry portion of the Apollo mission. The three dimensional

dynamics of the Apollo command module will be presented and subse-

quently simplified to two dimensional motion in an equatorial plane

about a rotating earth. Random variations about this nominal path

will then be used with appropriate random process noise to define the

optimal statistical filter for the assumed two dimensional model.

3.1 Description of Apollo Re-entry Vehicle

The Apollo command module is a conical capsule as shown in

Figure 3.2. Its shape and center of gravity provide an aerodynamic

trim orientation with the heat shield forward and one side nearly

parallel to the wind direction. Control jets are provided to damp out

oscillations in pitch and yaw and thus maintain stability in this trim

attitude. The angle of attack provided by this orientation is 22 ° and

creates a ratio of lift to drag of 0.3. Roll of the vehicle about the
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velocity direction is controlled by on-off operation of hypergolic

thrusters to allow for desired orientation of the lift force.

3.2 Vehicle Dynamics

With the assumption that the motion of the vehicle may be ade-

quately described as that of point mass about a spherical rotating earth,

we may write the vehicle equations of motion in the rotating spherical

coordinate frame shown in Figure 3.3 as

goRe 2 sin y

= + (R e
_r fv (R e + h)2

V% : f +
Y

+h) f22 cos k (siny cos _ -

cos y sin @ sin _)

2

vZcos Y goRe cos ¥

(R e + h) (R e + h) 2

+ 2f_V cos _ cos k

+ (R e +h) Q2 cos k (cos y cos I + sin y sin _ sink)

V 2 2
V cos _ _ = f_ cos 7 cos _ tank

(R e + h)

+ 2QV (sin _ sin y cos _ - sin _ cos y)

- (R e +h) f_2 cos k cos _ sink

1_ = Vsiny (3.i)

= V cos y sin

(R e + h)

6 = Vcos¥ cos

(R e + h) cos
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whe re

V

¥ =

¢ =

h =

k =

R
e

go

Q =

velocity relative to rotating earth

flight path angle measured positive above the horizon

azimuth angle

altitude

latitude

longitude

radius of earth

gravitational acceleration at surface of earth

earth rotation rate

and where fv' fy' and f¢ are the aerodynamic specific forces acting

on the vehicle. In terms of the roll angle, qb, and the sideslip angle,

, these forces may be defined as

2
pAV

= c a (Cy sin_ - C D cos_) (3 2)2m

2
pAV

= c a _'CLfY 2m

2
oAV

f¢ c a (C DZm

cos _- C DsinCsin_ - Cysin¢cos _)

cos Csin_ +Cy cos ¢cos_ +C L sine)

where

A
c

V
a

and where C L, CD,

atmospheric density

cross-sectional area of vehicle

relative velocity of vehicle with respect

to the surrounding air

and Cy are, respectively, the lift, drag, and

yaw coefficients.
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In order to maintain a reasonably simplified analysis of the

navigation system, we will assume that the vehicle moves in an equa-

torial plane about the earth and neglect all motions of the vehicle out

of this plane. With this assumption, we obtain

and

and the two dimensional equations of motion reduce to

2

fv goRe sin Y _ fi2= + (R e + h) sin y
(R e + h) 2

2
f cos y

# = _ + V cos ¥ gore + 20+

V (R e + h) V (Re+ h) Z

(Re+ h) _2 cos y

V

l_ = V sin y

= V cos y

(Re+ h)

The lift, drag, and yaw coefficients of the vehicle will, in

general, be nonlinear functions of the angle of attack, a, the sideslip

angle, _, the Mach number, the Reynolds number, and the angular

rates of the vehicle. At the high supersonic velocities encountered

during re-entry, however, these coefficients may be assumed dependent

only on the angle of attack and the sideslip angle. We thus approximate

the aerodynamic coefficients by polynomial functions of a and _ as
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3
C L = CLo a + CLla

2
= + CDIaC D CDo

Cy = Cyo + Cyl 3

+ CD2_2 (3.3)

If the design aerodynamic trim attitude is maintained, then

= O, _ = 22 °, Cy = O, and the nominal specific forces fv and fy

may be written as

2CD 2CL cos dp
PAcVa PAcVa (3 4)

= _ fy = .fv 2m 2m

Without knowledge of the wind conditions at the altitudes to be

considered (above 100,000 feet), we neglect them and assume that the

atmosphere rotates with the earth so that

V = V
a

We will also approximate the atmospheric density as an expo-

nential function of altitude as

P = Po e-i3h (3. 5)

where p and _] are constants.o

With these considerations, the equations of motion become

-/3hAcCDV2 2 sin y _22
= - Poe goRe + (Re+ h) sin y

2m (R e + h) 2

hAcCL V goR 2p o e-_ cos @ V cos y e cos y
= +

2m (Re+ h) V (Re+ h) 2

2fl + (Re +h) [12 cos y
+

V
(3.6)
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h = Vsin7

= V COS y

(Re+ h)

3.3 Random Error Sources

Errors in navigating with this model would be derived from the

assumptions intentionally employed to reduce the complexity of the

model, from uncertainties in the constant parameters and initial con-

ditions, and from random disturbances which could be described only

through their statistical characteristics. In this study, we neglect

deterministic variations which could be extracted from a more sophis-

ticated model and consider only the variations due to unpredictable

random disturbances.

The effectiveness of any statistical estimation scheme is

based upon the ability to describe the statistical properties of random

disturbances affecting the physical process and the measurements. In

the present study we have assumed the inertial measurement system

to contain no high frequency random noise. Therefore the random

disturbances in the measurements arise solely from the process noise

affecting the vehicle dynamics. If this process noise can be modeled

with sufficient white noise to produce independent white noise elements

in the measurements, then the Kalman filtering theory may be employed

directly in describing an optimal filter. If, on the other hand, the

specific force accelerations are not perturbed by independent white

noise elements, then recognition must be made of the fact that some

perfect knowledge of the state of the vehicle is obtained from the
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measurements. In this case, it was found in Chapter II that the statis-

tical filter may be defined for a reduced system, possibly utilizing

derivatives of the perfect measurements.

Since the elements of process noise play such an important role

in the design of the statistical filter, careful consideration should be

afforded the modeling of their statistical properties.

The primary random disturbances affecting the aerodynamic

forces during re-entry could be attributed to

1. Variations in the atmospheric density.

2. Random winds.

3. Unsteady motions of the vehicle about the

aerodynamic trim attitude.

4. Effects of control implementation errors.

5. Disturbances in the aerodynamic forces due to

unsteady flow around the vehicle and to the effects

of mass ablation from the heat shield.

Since no supercircular re-entry flights of an Apollo type vehicle

have been made, a statistical analysis of these disturbances must be

conjectured from available ground test data and intuitive reasoning.

Each of the above disturbances are considered both qualitatively and

quantitatively. The quantitative comparison is obtained through exami-

nation of the effect of each disturbance on the variations in the aerody-

namic force accelerations along the nominal re-entry trajectory chosen

for analysis in Chapter IV.

3.3.1 Atmospheric Density Variations

Some studies of atmospheric density variations have been made
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with limited data and theoretical model approximations. Reference

(ZZ} shows these variations to depend on season, latitude, and altitude.

Cole and Kantor (23} show approximate extreme values of the variations

between 30 and 90 kilometers as obtained through the assumption that

the atmosphere remains in hydrostatic equilibrium. The maximum

values of daily variations in density (with 95 per cent certainty} at a

latitude of 15 degrees north are shown by this study to depend on alti-

tude and are represented as percentage of nominal density in Figure

3.4 on page 60.

From these findings, we could attempt a crude model of the

statistical characteristics of the density variations. We first assume

that any density perturbation from standard would be highly correlated

in time so that at a given position in the upper atmosphere it could be

considered as a random constant. We would expect different values of

the random variations as we change altitude, however. Since the un-

certainty in density would not change rapidly with altitude, we could not

assume it to be white noise, but could possibly construct a shaping

filter to represent the correlation with altitude as

d 5p = - 1 1

where 5p is the uncertainty in density, hp is the correlation altitude

and where Wp(h) is white noise in altitude with

_ [Wp(h) ] = 0

!

[ Wp(h) Wp(h') ] = qp (h) 5 (h-h')
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The absolute value in (3.7) is necessary to insure stability of

the shaping filter.

Since the model of the vehicle dynamics employs time as the

independent variable, it will be necessary to transform the density

variation model to one which is time dependent. This can be done by

multiplying equation (3.7) by the altitude rate 1_ to obtain

6_ : lhl d s_ : lhl 6p + I_I w Chl 13.91
IdhI h_ h P

With a linearity assumption, we may also obtain

5 (t-r) = IhJ 5 (h-h')

Then treating the entire forcing function JhJ

hp

time, Up(t), we obtain

Wp (h) as white noise in

I/,I 8p + Up(t)6_ = --_--
P

where

8[Up(t)] : o

[_Up(t) Up(r)] = qp(t) 5(t-r)

With essentially no knowledge of the propagation of density

perturbations at altitudes above 100,000 feet, we will assume that the

correlation altitude, hp , may be represented as the inverse of the

constant _ defined by (3.5), to obtain
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The forced (or particular} solution to (3.10) may be written as

t

5p(t) = ,_ e-t3l£l (t-r) Up(r) dr

and hence the variance of 5p as

t t

2 = 5p(tF = _ dr I J" dr 2 e -/3jl_j (t-Tl)ep e-/3l r]] (t-r 2) qp(rl)6(re-rl)

On a quasi-stationary basis, we treat 14 and qp as constants to allow

integration of this function. Hence

oo

z = j" e-Z_3l__l(t-r I) qp drl_p

o _

Then letting 7" = t-r 1 and dr = -drl, we obtain

co

O'p e qp dr =
o 2_31£I

2 qp
O" =

With these simplifying assumptions,

2

we can now express qp
as

According to Reference (23) the standard deviation c; of the
P

density variation could be represented as a percentage of nominal

density as
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O'p(h) : O"p (h) p

where _' (h) is represented by a curve such as shown in Figure 3.4.
P

For simplification we assume _ (h) to be a linear function of altitude

so that

_p(h) = (k 1 +k 2h) p (3.11)

where k I and k 2 are constants with values

.2
kl

10 -6 ft-I
k2 = ---T-

to give the linear curve shown in Figure 3.4. The result of integrating

the variance of 6p along a nominal trajectory from an initial RMS

uncertainty 5p(0) of 2x10 -ll slug/ft 3 (or approximately 0.2p) is also

shown in Figure 3.4. The predominant increase in 5p occurs during
P

the skip maneuver while 1_ is positive. The results obtained would

suggest that the model is not truly representative of the atmospheric

density variations. However, since the intent here is not to develop a

highly sophisticated model but rather to illustrate the method of including

such a model in the statistical navigation system,

be accepted as adequate.

The effect of a small variation in density,

dynamic force accelerations may be evaluated as

f

6f = _ 5p
v p

f
= Y 5p6% -V-

the above model will

50, on the aero-
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value s,

Expressing these variations as a percentage of the nominal

fv and f¥, we have

These variations are shown in Figure 3.5 as a function of time along

the nominal trajectory.

3.3.2 Random Wind Velocities

A glance at Reference (22) will reveal that the structure of

atmospheric winds is indeed complex. The constantly changing pres-

sure and temperature patterns throughout the atmosphere cause varia-

tions between two observations of wind velocities which increase with

the intervals of both space and time between the observations. The rate

of increase of wind changes between observations will, in turn, depend

upon season, latitude, longitude, and altitude. Although very scant data

is available concerning wind variations above 100,000 feet, some evi-

dence has been shown of large day-to-day variations,of tidal variations

within the period of a day, of eddies with 100 minute life span, and of

small-scale turbulence with 10 to 30 second life span. Until more

quantitative data is made available through analysis of rocket flights

in the upper atmosphere, it will be impossible to create an accurate

model of the wind variations. It would be safe to assume, however,

that random variations in winds are present and could be modeled as

some form of colored noise correlated with both time and distance.

For the purpose of comparison, we will investigate the effects

of both down-range and cross-winds on the aerodynamic forces along

the nominal trajectory chosen for study.
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Down range winds, wd, may be considered as a perturbation in

the velocity, v, which affects the aerodynamic forces as

2f
= V Wd5 fv

2f

= Y w d5 fy v

Assuming that the cross winds, w c, act in the direction of

positive liftin the plane of motion, their effect on the aerodynamic

forces may be written as

fy
5f = --- w

V V C

f
5f = __v w

y v c

The effect of constant wind components of 10 fps acting along

the trajectory on the aerodynamic force accelerations are shown in

Figure 3.6 as a percentage of the aerodynamic accelerations. We note

the greatest effect of winds to be the perturbation of fy due to the cross

winds. This effect is notable as the in-plane lift component, fy, ap-

proaches zero.

3.3.3 Vehicle Oscillations

As discussed in section 3. I, an on-off type control system will

be employed on the Apollo command module to maintain the aerodynam-

ically stable attitude during re-entry. Due to random aerodynamic

torques about this stable attitude and to dead zones in the operation of

the stabilization system, some random oscillations will be experienced

by the vehicle in the pitch and yaw directions. Approximate data
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obtained from R. Morth (24) show these oscillations to have an average

frequency of one cycle per second with an amplitude of one degree. In

order to model these oscillations, we will treat them as white noise

which, when passed through a one cycle per second band filter, produces

an equivalent RMS value of

RMS (Ss)

1 ]i/z
(sin (2_tt))2 dt = _f 2--'-2-

0

The variation in angle of attack s and sideslip angle

then be written as

degree

would

where

and

e[us(t)] = 0, e[uc(t)] = 0

[us(t )us(%)] : qsCt) 5(t-r)

_ [u_(t) u_(r)] = q_(t) 6(t-r)

With us and u_ treated as white noise with correlation times

of i second and RMS values of _-
2 degree, we obtain

2

qs q_ = 2(1)/--_/ = 1 deg. 2
= sec.



66

that

We assume the pitch and yaw oscillations to be independent so

e [us(t) u_(V)] : 0

These noise sources would have a linear effect on variations in

the aerodynamic coefficients which could be obtained from (3.3) as

5C D : 2 CD1 au + CD2_U _

6C L = (CLo + 3CLIa2 ) u s

2
5Cy = (Cyo + 3Cyl_ ) u_

Through linearization of (3.2) and using the nominal values of

_ = O, a = 22 °, and Cy O, we obtain

2CDI_f v

(Sfv)_ - CD ' u s

(Sfy)_ = (CLo + 3CLIa2) f_'
C L us

(Sfv)_ : 0

(C D + Cyo)

= - tan _ fyu_
(Sfy)_ CL

For the particular vehicle described in Chapter IV, the effects

of these variations on f and f are defined as
v y
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(Sfv)_
r

V

f
Y

f
Y

= .0007 u

= 1.7036 u

= -6. 388 tan _(

These effects are shown in Figure 3.7 along the nominal trajec-

tory. We note the effect of yaw oscillations to be similar to the effect

of cross winds in the plane of motion shown in Figure 3.6.

3.3.4 Control Implementation Errors

Since no aerodynamic moments are expected about the vehicle

roll axis, any variation in the roll angle would be derived from random

errors in the control system. In such an on-off type control system,

the major errors are introduced through limit cycling within the roll

control dead zone. We will assume well designed guidance and control

systems such that the magnitude of these errors produce a negligible

effect upon the aerodynamic forces.

It should be noted here that, in an actual system, the vehicle

attitude, e.g., the angles c_, _, and _, would be estimated by the

navigation system from IMU angular measurements. Since we have

assumed perfect measurements and have not considered estimation

of the vehicle attitude, we must assume that the navigation system has

perfect knowledge of these angles except for high frequency variations.
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3.3.5 Effects of Unsteady Flow and Mass Ablation

Among the random disturbances considered to affect the aero-

dynamic forces, probably the least is known about variations due to

unsteady flow and mass ablation. Recent studies (24) (25) (26) have

shown a marked decrease in the nominal aerodynamic coefficients

due to viscous effects from asymmetric conical bodies and to local

perturbations of the boundary layer and cross flow from the injection

of ablative mass into the flow. The ablation was also shown in (26)

to significantly change the aerodynamic pitching moment and damping

coefficients. However, insufficient data is available at the present

time to estimate any statistical characteristics of random variations

in the aerodynamic forces or coefficients due to these effects.

Although it would seem reasonable to assume some additive white

noise components in the aerodynamic coefficient variations resulting

from these effects, such assumption should be made with extreme caution

until some substantiating quantitative data is made available.

3.3.6 Summary

From the considerations above, it would be possible to assume

that the primary sources of random disturbances in the aerodynamic

forces stem from atmospheric density variations and vehicle oscillations

in pitch and yaw. Although the random wind velocities, control imple-

mentation errors and mass ablation would play some role in creating

random disturbances, such effects will be considered of secondary

nature at the present time.

Of the three independent white noise sources considered at the

present time, two enter directly into the specific force accelerations.



7O

The third, up, also affects the aerodynamic force accelerations, but

indirectly through the shaping filter for the assumed colored noise

variation in atmospheric density. We define a noise vector uf to in-

clude the two noise elements directly affecting the specific force

accelerations as

U

uf = u_

{3. 14)

From the statistical considerations of the independent elements in uf,

we may write

[uf]

and

= 0

[ufCt} ufTc%)] = Qf(t) 5{t-1") (3.15}

where

Qf

3.4 Dynamics of State Variations

From consideration of the individual sources of random varia-

tions in the state variables, it is possible to construct linear dynamic

equations of motion for the total state variations, 5V, 57, 5h, and 50,

defined as

5V = V - V
O

6y = y - y
0

5h = h - h
o

58 = 8 - 8
O
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where the subscript o refers to the nominal values'obtained from the

solution of equations (3.6). Since the variation in atmospheric density,

5p , is determined through the differential equation (3.12), we will

consider the density p as an additional state variable in our system

of equations with its differential equation written as

: - _ Pfi : - _ pV sin y

Combining the five state variables to be considered into a

vector, s, defined as

V

S = h

P

the equations describing the nominal path of the vehicle may now be

written as

= - + b
--O --O

(3.16)

where a is the specific force acceleration vector:
--0

fav}ifv]a = a_- = -fy/V-
--0

with fv and f¥ defined by equation (3. Z), and where b °

remaining non-specific force terms as

includes the
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Ibvl
by

b = bh--0

b 0

b
P

with

2

go R sin y _2b = e + (R + h) sin y

v (R e + h)2 e

2

by = V cos y _ goRe cos y + 2fi + (Re +h) _2 cos y

(Re+ h) V(R e + h) 2 V

bh = V sin y (3.17)

b@ = V cos y
(Re+ h)

b = - _p V siny
P

The true state vector s is found as the sum of the nominal state

and random variations from the nominal, 6 s,

s(t) = So(t) + 5s(t)

where 6 s

and b as

will, in turn, be derived from variations in the functions

!6a}6__ = -o- + 6b_

a
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Perturbations in the specific force accelerations will be a

function of variations in the state variables and of the white noise

sources considered in section 3.3.

obtain

From linearization of (3.16) we

: 5f = a (25V_ _Sh+ 6p)+ PAcV2F(Cy5 a v v v T P-- 2m L. cos

+ C D sin_)u_ + sin_ 5 Cy - cos_ 6 CD]

fy = 5V _Sh + 5p + cos ¢6 C LSay = 5 "V" a¥ _ - _ 2m

- sin_sin_ 5 C D - sin ¢cos_ Cy

+ (Cy sin ¢ sin _ - C D sin _ cos _ )u_ ]

Incorporating the variations in the aerodynamic coefficients from (3.13)

and noting that the nominal value of _ , and hence that of Cy, is zero,

we obtain

pA V 2

(_ 1 6p ) c (2CDI_U)= 6 V - _35h + _- 2m5 a v a v

5 ay P AcV [ay (_1 5 V - _Sh + P'I 5p) + 2m - CD sin#u_

+ { CLo + 3 CLla2) u s cos # - Cyo u_ sin #j

(3.18)

Employing the vector notation as defined above, the total variation in

the specific force acceleration may be written as

5_a = ASs + Gfuf (3.19)
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where the noise vector, uf , is defined by (3.14) and the matrices A

and Gf are obtained from the above linear equations as

A

2a a
v 0 - _a 0 __v

V v p

ay ay
-9- 0 - 0 -6-

(3.20)

pAV
= C

Gf 2m
2 V CD1 a 0 _]
(CLo + 3 CL1 ng ) cos ¢ - (CD+ Cyo) sin

(3.21)

In the same manner, we obtain variations in the non-specific

force terms, 5b, as

6b = B 5s_. + u b (3.22)

where

u b {0}0
= 0

0

Up

and the matrix B is obtained from linearization of equations (3.17) as

0 b12 b13 0 0

b21 b22 b23 0 0

b31 b32 0 0 0

b41 b42 b43 0 0

0 0 0 0 b 55

S (3.23)
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where

b = [
12

b13 = [

b21 = [

b22 : E

b23 = [

2
goRe

(Re+h)

2
ZgoR e

3
(Re+h)

(R + h)
e

V

(Re+h)

V
2

(Re+h)

+ (R +h) fl2 ] cos y
e

+ f_2] sin y

+

+

+

2

goRe

V2(Re + h) 2

2
goRe

2
V(Re+ h)

2
2goR e

3
V(Re+h)

(R e + h) fl2
- ] cos y

V 2

(R e + h) _2
] siny

V

f12
+ -- ] cos ¥

V

b31 = sin y

b32 = V cos y

= cos y
_41 (R + h)

e

b42 -
V sin y

(R e +h)

b43 =
V cos ¥

(Re+ h)z

b55 : - _ Ii{I (from equation (3.10))



76

Upon combining (3.19) and (3. ZZ), we obtain the linear differen-

tial equation for the state variations 5 s as

5_ = F 5s + G u (3.24)

whe re

G [ o]
Gf '_ I 0

' 0
I

O , 0
' 1
I

and where O is a 3x2 null matrix.

3.5 Inertial Measurement System

The proposed measurement system for the Apollo re-entry

vehicle is an inertial measurement unit consisting of three single de-

gree of freedom gyros and three accelerometers. The orientation of

the accelerometer input axes, X a, Ya' Za' with respect to an inertial

reference frame, X I, YI' ZI' maintained by the stable platform is

shown in Figure 3.8. The inertial reference frame is established at

the state of re-entry (arbitrarily set at an altitude of 400,000 feet) with

the X I axis directed radially away from the earth, the Z I axis in the

plane of motion of the vehicle normal to the X I axis, and the YI axis

completing the right hand triad.
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78

Since planar motion of the vehicle is considered in the present

analysis, there will be accelerations only in the X I and Z I directions

as sensed by the (-) Z a and X a accelerometers, respectively. We will

thus assume measurements to be received from these two accelerom-

eters only.

The acceleration information, a received from the IMU in--m'

these inertial coordinates may be converted to the specific force accel-

erations in the rotating earth-centered coordinates employed in our

model by the transformation (see Figure 3.3)

a : T a (3.25)
_m

where

T = [ cos X V sin X "I

[ !

-sinx V cos XJ

and X = @ + ot - ¥

we note that ay does not represent true specific force acceleration

but was defined in (3.16) as f¥/V; hence V appears in T to transform

to measured acceleration.

With the assumption that the measured accelerations a contain--m

no errors from the IMU, any variations in a would be the direct re--m

sult of perturbations in the state variables and in the specific force

accelerations and could be written as

where

a = a + 5a = T(s )a + 5a-m -mo -m o -o -m

5 a : 5 T a + T(s o) 5 a (3. Z6)-m -o -
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Assuming that 5T is the result of small perturbations in the state

variables we obtain

- sinX V cos X sinx

5T = (5@ - 6y) + 6 V

cos X - V sin XI cos X

-1
Premultiplication of each term by T T = I, where

f,-

T -I = l|C°S X - sinx

L___ _ cOSXv

(3.26a)

yields

[0v]5T = T 1 (6@ - 6y)

-V

+ T

00
5V

Subsequent post-multiplication by a
--O

5Ta : T
--O [ V ay

a
v

V

then gives

(5@ 5y)

0
+

ay
-V-

5V

This result can now be written as a linear combination of the state varia-

tions 5s, as

where

5Ta = T Z 5s (3.27)

Z

I O -V ay 0 V ay 01ay a v 0 av 0
-_- -V" --_
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With the result of the variation in specific force acceleration,

5a given by equation (3 1 9), the total variation in a may now be_ " -m

written as

5a = T (Z +A) 5s + T Gfuf-m

In order to remove the nominal effects of the coordinate rotation, we

will transform these variations to the navigating coordinate frame and

define the measurements to be considered by the navigation system as

y = T -1 5a = (Z+A) Ss + Gfuf (3.28)- -m - -

3.6 Derivation of Statistical Filter

Having defined the equations describing the random linear var-

iations in the state of the vehicle and in the inertial measurements, it

is now possible to employ the results of section 2.3.2 in developing a

statistical filter for obtaining a best estimate of the state variables.

The linear set of equations describing the random state varia-

tions is obtained from (3.24) as

5_ = F 5s + Gu

Linear variations in the measurements are shown in equation

(3.28) as

y : (Z +A) 5s_ + Gfuf

where the matrices Z, A, and Gf are defined by equations (3.27),

(3.20), and (3.21), respectively.

As pointed out in Chapter II, a major requirement to the use of

statistical estimation theory is that the measurement variations contain
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independent white noise elements. We can investigate this independence

evaluation of the matrix product GfQfGf Tthrough

p Ac V )2Gf Qf Gf T = 2m

F 1
l(c.V) q _ c,c._V cos 96q^ |

.............. ,:......... +.....
[ClCzVcos_qa,(c2cos*) q_ (c3 sin@)q_

(3.29)

where the constants, cI, c2, and c3 are defined as

cI = 2 a CDI

c2 = CLo + 3CLI

c3 = C D + Cyo

2
0f

The determinant of GfQfGf T can be written as

IGfQfGfTI \ 2-m'm V2 c12 c32 sin2_q_ c_

If the vehicle is moving with a finite velocity through the atmos-

phere, this result reveals a singularity only when the sine of the roll

angle C passes through zero. Hence the measurements will contain

independent white noise elements except when this condition is reached.

During the time that sin _ is equal to zero some linear combination of

the measurements could be found which contains no noise and hence

produces a perfect estimate of some combination of the state variations.

Since the roll angle is allowed to assume any value set by the control

system, it would be necessary for the navigation system to contain two

separate filters to accommodate these two situations. We now derive
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these two filters. For convenience we will refer to filter A and filter

B for use when sin ¢__ 0 and when sin _ = 0, respectively.

3.6.1 Derivation of Filter A (sin _ _ 0}

When the attitude of the vehicle is such that sin _ is not zero,

the measurements y_ will contain independent white noise elements,

and we can define (in the notation of section 2.3.2)

z = HSs + Du

where H = Z + A (3.30)

D = [GfO]

and where u is the total noise vector defined in (3.24).

From the development in Chapter II, it is found that the best

5s, may be determined from the filterestimate of the variations,

(2.72) as

= + (3,31)

where

]_ = F - = + B - O = B - (3.32)

K=pHTR -1

R -- GfQfGf T

and where the estimation error covariance matrix is found as the

solution to

[ ]O 0 KT= ]] p + p]]T + - -KR

Ow qp

(3.33)
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with initial conditions

and

5s_(t o) = o_

P(t o) = e [ 5s(t o) 5sT_ (t o )] (3.34)

It is now possible to formulate a navigation system with the

use of this estimate of the variations as

s (t) = _so(t) + 8 _s(t) (3.35)

where s is the nominal value of the state obtained from equations
--O

(3.16) and where 5s is the optimal estimate of the state obtained from

equation (3.31). This navigation system is shown in diagram form in

Figure 3.9 on page 86.

Inputs to this system consist of the acceleration, a m, received

from the IMU and the value of the roll angle, ¢. (All of this information

has been assumed perfect within this analysis. ) Two simultaneous inte-

grations are performed for the nominal value, s o, and the linear best

estimate, 5s . The best estimate, s, is then obtained as the sum of
_ m

these values.

It is often possible to simplify such an estimation system by

considering a continuous update of the nominal state s o to conform

with s . Such an update procedure would imply that 5s remains zero

and would thus allow integration of a single set of equations for s .

To investigate such a possibility, we combine equations (3.31) and

(3.35) to obtain
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Eoc,o]S =

- 0
+ bo(So) +Bs__ + K(z -HSs)

From (3.26) and (3.28), we find

a = T(So)[ s o) + z]-m - ao( -

-I
or z = T (s )_

-- --O m - ao(S o)

Substitution of this into the equation above yields

]--s = s°)am + bo(S o) + ]] 6's_ + K(T-I(so )

- ao(S_o) - H 5_s)

The linearity assumption allows the definition of bo(So),

-1
T (s o)a m as

b_o(S_o) = bo(S - 5s ) = b ° BSs

ao(S o) = a_o(S- 5s) = _ao(S) - A6s

a_o(So), and

- o) = : T-l(s)a + Z5sT l(s a ('s - 5_)am m--m .... --

(where derivation of the final term,

presented in section 3.5 for 5 am).

Z 5 s, is similar to the derivation
D



85

From the definitions of

we obtain

and H

__Ss : BSs -

HSs = ASs + ZSs

5s

in equations (3.32) and (3.30),

With these considerations, the differential equation for s reduces to

IT _" 1 °(s (T-I a°(s

-l(s)a
-_ - --m -_ ---
s = + b ) + K (_)a - ) )
- 0 -- -m -- -

(3.36)

It is thus possible to considerably simplify the original statis-

tical navigation system to the integration of one set of state variables

and the determination of the gain matrix

K = pHTR -1

ao( _s),through the solution of equation (3.33). The functions

and T-I(_) are evaluated from the non-linear equations (3.16),

and (3.26a) with the use of the best estimate, s, of the state.

simplified navigation system is shown in Figure 3.10.

3.6.2 Derivation of Filter B (sin ¢ = 0)

When the roll angle _ assumes a value for which sin ¢ = 0,

equations (3.19) and (3.21) show that the noise due to random yaw

oscillations will have no affect on the linear variations in the specific

force accelerations. With recognition of this fact, we may remove

_bo(S_),

(3.17),

The
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the noise element u c from the system and redefine the vector u and

the matrices Gf and G as

U (3.37)

Gf

oAV
= C

2m

c.... ....... _].
CLo + 3CLI _2) cos _ J

G _

[ G f] 0

0

0 0

0 0

0 1

With the definitions of the specific force accelerations

P AcVZCD 9AcVCLCOS

= , ay =av 2m 2m

Gf may be written as

= I_ 1 av 1Gf z%J
(3.38)

where the constants c 1 and c z have been redefined as

Z a CD1 (CLo+3CLI _z)

c 1 = and c 2
C D C L

(3.39)
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The covariance of the noise vector u will be defined as

g [uCt) uTcr)] = QCt) 5(t-v) (3.40)

wh e re

Q

The linear equations describing the state and measurement

variations may be written in terms of these quantities as

5_ = F6s + Gu (3.41)

:f = (A + Z) 5s + Gfu a (3.42)

where

F = [_] + B

and where A, B, and Z are obtained from (3.20), (3.23), and (3.27) as

A

-2a
V

-W- 0 -_a v

ay
, V- o -_a v

0

0

m

a
v

P

a__v
P

{3.43)

S __

0 b12 b13 0 0

b21 b22 b23 0 0

b31 b32 0 0 0

b41 b42 b43 0 0

0 0 0 0 b
55

(3.44)
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[____7 -V ay 0 V ay ii (3.45)

Z

a__v 0 av

V V

with the elements of B defined in (3.23).

Since the measurement variations, y_, are dependent in u Or'

it is possible to obtain one linear combination of the measurement

variations which contains white noise and one which is noise-free.

represent these in the notation of section 2.3.1 as

We

zl

x2

where

L

= LlY - {3.46)

= L 2_ (3.47}

(3.48)

is a non-singular linear transformation such that

L 2 Of ua 0 (3 49)

We thus obtain perfect knowledge of

x2 = L 2 (A + Z) 5s = M 2 5s (3.50)

as the linear combination M 2

x 2, we obtain

of the state variations. Differentiating

: MZ 6s + M z6

or £2 = (IVI2 + MzF) 5s + M 2 Gu (3.51)
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If M2Gu and L1Gfu _ contain independent white noise elements, we

can define a new measurement z 2 = x2 and proceed with the definition

of the statistical filter corresponding to the measurements

/zlj ILlylz = = -- = H I 5s_ + Du_

-- z2 x2

(3.52)

whe re

and

D

Independence of noise in z will exist if the determinant of DQD T can

be shown to be non-singular. To this end, we derive the components of

the D matrix. From (3.48) and (3.38) we obtain

L 1Gf = 41Cl av + 42c2ay (3.54)

The requirement (3.49) that L2Gfu a 0 provides a relationship between

1,3 and 1,4 such that

cla
I,4 = _ v 1,3 (3.55)

c2a Y

Also, the determinant of L can be written as

ILl = 1,11,4- 1,21,3

1,3

c2a ¥
(1,1Cl av + 1,2C2ay) (3.56)
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Using this result in (3.54), there follows

L1G f =
e2ay[Ll

_3
(3.57)

From (3.50) we obtain

or

• M 2 = L 2 (A + Z)

M 2 = 63av [-2V° W +]w (3.58)

where
c 1

c = 1 - --

o c 2
(3.59)

and W =
V ay c a+ 1 v

a v c 2 V ay

(3.60)

We note that when sin ¢ = 0,
V av C L

=±

a v C D
= ± .3, so that W = constant.

The D matrix may now be written in terms of the above definitions as

D

- I I I

c2a ¥ L t
- I 0

...................... I ........

I

'b3C2avay V c2 ay i p
.. !

(3.61)

If Q is a positive definite matrix, the product DQD T will be nonsingular

if the determinant of D is non-zero. From the above relationship, we

write

CoCzavayILI : (Cl- c2)ava¥1L I
[D[ = -

P P
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Hence, if c 1 _= c 2, and L is non-singular, the measurements z as

defined by (3.52) will contain independent white noise. We may now con-

tinue with the derivation of the filter for these measurements according

to the theory developed in section 2.3.2.

We note that perfect knowledge of a linear combination of 5 s

is available through the relationship x 2 = M 2 5 s. Thus the estimation

of 5 s will be reduced to the estimation of

xl = M 1 5s (3.62)

where M is chosen such that
1

(3.63)

is non-singular.

M as
1

M 1

From knowledge of M 2 from (3.58), we may choose

= [ I O] (3.64)

so that

x 1

5V

5y
5h
6@

Noting that the matrix D is invertible, it is possible to estimate xl by

the filter (2.64) as

"_ xl "" _x I = _ +FlzX2+l_(__ -_Xl)+GlZ_ (3.65)
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where

= Fll - GI_

1_ = D -1 H 1 M -1M1T

G 1 = M1G

[ Fll F12 ] = _IM -1 + MFM -1

z = D lz - Ix }
_: = PI_T Q-I (3.66)

and where

= + P1 FT - KQl_T (3.67)

After a significant amount of algebraic simplification, the above

matrices may be written as

T
= M1]_M 1

where B = B -

(3.68)

FI2

63Co

ay

av_3C o

0

0
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G1 =

lav

2ay

o°

--

0

0

0

D -1 =

_3

cea_lLI

_,3 p

oolLI
2c o clav )

- W

V c2a Y _,3avCo

H1M-1 i 02

-&lav+ ,t.,2a Y

$3Coav

__ + __ +_

V V P

Way

C
O

x 2

m

H = [_ - - 1
0 h12 0 -h12

21 h22 h23 hz4J

(3.69)

where ( Va)- = 1 av + Y

h12 c2-c 1 Va ay v

- :0 ]
[_ 2bl 2h22 : -lq24 + p W (b42_ b22) + _
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[2b3v av_i23 = p +W (b43 _ b23 _ _au
0

I.W a (Vay Clav )- = v + 2a + d2-_yV-h24 - P co V y av
tan ¢i 1c o

The best estimate of the state variations are thus obtained as

5 s{t) = M-l(t)
xl(t)

x 2(t)

where

M-1

0

= 0

0

2p

0 0 0 0

I 0 0 0

0 I 0 0

0 0 I 0

w-2 /3p -w-2 p
c o c o '_3Coav

and where xl(t) is determined through solution of (3.65). A diagram

representing this filter is shown in Figure 3.11 on page 99.

The formulation of this filter as shown above provides a rela-

tively simple equation (3.67) for solution of the covariance matrix P.

However, the filtering equation (3.65) would require much simplification

before being applied in an on-board navigation system.

Noting that

x2 = L 2 _r,



96

we can obtain

Fl2X 2 = F 12L2 y_
1

C
O

1

ay

a
v

0

0

I

cIav

c2a ¥

c1

c2
Z

Also, noting that

-I
G1D

43Clav
0

CZayl Ul

0

ILl

0 0

0 0

and that Zl =

we obtain

GlZ

LlY_,

o_1 i0I= G 1 (z-

x2

or

GlZ_ =

43cla v

CzayIUl

_3

ILl

0

0

L (61av + 4zay) ]i - &3 Coav L2 [
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After some algebraic simplification,

Fl2x 2 + G I _ :

y

0

we obtain

= IT- 1

(s o ) a m - ao(So)

0 ]
We now define a diminished state vector

s 1 {v}Y

h

@

S 1 as

and its associated best estimate as

s I = _sI + 5s 1
O

From our choice of M 1 in (3.64), we find that

5s I x I

so that 5 s 1 is described by the filtering equation (3.65). Through

considerations similar to those used to simplify filter A, it is possible

to obtain a differential equation for s 1 as

s 1
T-l(sl ) a m

0
+ bl(_I)_ + I_D -1

where

b I = Iby}by

bh

b@

as obtained from (3.17)
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and

__ = T-l(sl)am__ - ao(S 1,_ )

with the best estimate of p obtained as

p : b (s) + P d (L2Y)
P - _3avCo dt -

We note that the elements of the linear transformation matrix L will

always be eliminated in the final results. Hence, no generality is lost

by choosing 4 3 = 1.

The entire filter B for s(t) may then be written as

S

T-l(_)a

0

m u m V -1
+ bot'S) + K' L1 y- (3.70)

-
where

B

K' [  !°L1
0 ) voj

I

A diagram of this simplified filter is shown in Figure 3. 12. We

note a similarity with Filter A as described by equation (3.36) except

for the differentiation of measurements.

3.6.3 Combined Dual Filtering Navigation System

A complete statistical navigation system for the random errors

considered in section 3.3 and for assumed perfect measurements would

require the use of filters A and B defined above and additional switching

logic to provide continuous navigation as the roll angle passes through
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Diagram of Filter B
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Figure 3.12

Simplified Filter B
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0 or 180 degrees. The switching logic must select the times at which

switching is to occur and equip each filter with appropriate initial con-

ditions.

Upon switching from filter A to filter B at time t o, the initial

conditions for filter B are obtained from equations (2.51} and (2.52} as

-1
__ {to+ "_ to)= s( ) + M

=_(to)_ + M -1

x 1 (to+)

x 2 (to)

M1P(to)M2 T (t o} [M2(t o )P {t o }M2 T (t o}]

1 x 2

pl(to +) = M1P(to+ ) M1T (3.71)

where

P(to+ ) = P(to) - P(to)M2T(to)[Mz(to)P(to)M2T(to )]-
1
M2(to)P (to )

(3.72)

and where P(t o) is the estimation error covariance matrix obtained from

filter A immediately before switching.

Upon switching back to filter A at time t 1 , the initial value of

P(t 1) is obtained from Pl(tl) according to equation (2.55) as

P1 (tl) _] M-1

P(tl ) = M-l(tl ) T(tl) (3.73)

The switching times, t o and t 1 must be chosen with discretion.

Since the error covariance matrix R in equation (3.32b) for filter A
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becomes singular as sin _ approaches zero, the gain matrix K employed

in equation (3.33) for 1_ will become indefinite when this condition is

reached. Hence, switching should occur at times when sin _ = e , where

¢ is a small number.

The perfect measurement realized when sin _-- 0 affords a very

pronounced reduction of the estimation errors. As suggested by (3.68)

and (3.69), the extent of this reduction is to reduce the rank of the co-

variance matrix P by one. Since the sine of the roll angle must be

continuous as the vehicle is rotated, however, we should expect the

covariance matrix for filter A to approach this singularity condition

before filter B is brought into use. In order to determine to some extent

how this reduction is initiated, we examine the propagation of P from

equation (3.33) for small values of sin _.

With the assurance that the tangent of _ will not be infinite in

this region, we can rewrite the measurement error covariance matrix

R from equation (3.29) as

(Clav)2q _

a

2

Clc2avayq a ay

Clc2avayq a

(c22q_ + c32 tan2_q_

where

c 1
2_ CD1

C D

2
C D +

CLo + 3CLI _ c3 CY°
c 2 = CL = CL
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or equivalently as

a ___ joy][2a 0 Cl qa

ay ClC2q _
°IcIc2qa av

2 2
c2 q + c 3 tan2q_ 0 ay

The inverse of R can then be written as

-1
R

1

a
v

0

0

1

ay

2

_ (c3zC2 + 1tanZq_q c -q--_a)

c 2

ClC32tan z q_q_

c 2

ClC3Ztan 2 Cq_

i

a
v

0

I

ay

Noting that

H = Z+A =

"2a
V

-ZF- -Va¥ 0 Vay

2ay aav 0 v
-V- _- -V-

a
v

P

a¥

P

the matrix product H T R- IH,

as

HT R-IH = l

q_ tan 2 ¢

for small values of tan ¢ , can be written
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where

b

E =

m

4 2 2 k2
7 kl V k2 0 - V

_7k2 k3 0 - k3

0 0 0 0

- _7 k2 -k3 0 k 3

2 k2 k2

P'-vkl T 0 -_-

B

2k 1

DV

0

k 2

P

k 1

2
P

with

k 3 =

k
1

m_l), k2= Ic2 2
= 1 fl _ c2 CD c2 CL

1
--2
c 3

CL c22 c2
CD 2 "---2-+ 2 -- + CD2 )

cI cI CL2

The final term in {3.33) may thus be approximated as

KRK T = p HT R-1Hp = 1 p_ p

q_ tan2¢

As tan ¢ approaches zero, we would expect this term to be the domi-

nating term in equation (3.33) and I_ could then be approximated as

p =. 1 PEP

q_ tan 2

Hence, we find that, as the condition sin _ = 0 is approached while

employing filter A, the estimation errors for all the state variables
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will be reduced. Also, if the filtering is continued to sin ¢ = 0, the

errors in estimation observed at this condition should theoretically be

exactly zero. This trend is observed in the computer simulation dis-

cussed in Chapter IV.

Note should also be taken of the manner in which the atmospheric

density noise has been defined in section 3.3.1. In order to transform

the altitude dependent white noise function wp(h) to time dependent

noise, Up (t), it was assumed permissible to multiply by the altitude

rate as

Up(t) = IhJ Wp(h)

This transformation would imply that perfect knowledge of the atmos-

pheric density is obtained when the vehicle is travelling at constant

altitude and would hence remove the effect of Up when 1_ is zero. The

result of this removal would have little effect on the operation of filter

A, since it would merely remove the positive forcing term qp from

equation (3.33). However, in filter B, the removal of Up would again

suggest measurements which are dependent in white noise and thus force

a redefinition of the measurement and filtering equations. Hence the

possibility of the two conditions sin ¢ = 0, and 1_ = 0, would have to be

considered in the design of a practical navigation system.

3.7 Additional White Noise Considerations

The dual filtering system derived above appears to be somewhat

cumbersome and impractical for employment as a real-time on-board

navigation system due to the necessary switching logic and to the re-

quirement for two independent filtering systems.
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The need for a dual filter is created by the removal of the

effects of primary noise elements from the measurements when such

conditions as zero roll angle and zero altitude rate are realized. This

ineffectiveness of the primary noise sources, however, would suggest

that some additional white noise, neglected because of its secondary

nature, would have a dominant effect on the system when the roll angle

is zero.

The consideration of any additional white noise sources in the

aerodynamic forces or in the measurement system would provide the

assurance of independent white noise in the measurements at all times.

Thus, the need for filter B would be eliminated and a simplified naviga-

tion system would be obtained with the employment of a single filter.

In order to compare such a single filtering system with the dual

system derived above, we will consider some additive white noise in

the measurements such that equation (3. Z8) becomes

y = (Z + A)5s + Gfuf + GaU a (3.74)

where u
-a

is white noise with zero mean and covariance

8 [Ua(t) Ua(r)T] = Qa(t)5(t_r ) (3.75)

Without physical justification for the origin of this noise either in the

measurement system or in the aerodynamic forces, we will assume it

to be obtained entirely from high frequency random uncertainties in the

measurement data. From considerations in section 3.5, then, we obtain

the matrix G a as
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G
a

-l
= T cos X sin X]

(3.76)

We also assume the matrix

Qa =

to be diagonal with equal elements as

Defining a vector of noise elements affecting the measurements as

U
--m

uf

u a

the measurement variations may be written as

y = (Z +a) 5s + [ Gf i Ga ] U-m

If we assume no correlation between

matrix of u becomes

and u , the covariance
uf --a

[ Um(t )Um(r)T] 5 (t-r) = Qm 5 (t-r)

and hence the matrix

ment noise, is determined as

R s , representing the covariance of measure-

:G ]QmR s = [ Gf: a
Gf T ] =

GaTJ GfQfGfT + GaQaGa T

(3.77)
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We can now investigate the independence of white noise elements

in the measurements through evaluation of the singularity of R s. With

G a and Qa defined above, we obtain

[:0]T = (3.78)
GaQaGa qa

Adding this to GfQfGf T defined by (3.29), R s becomes

R
S

(2m qce+ qa

2 2

ClC2V cos @qcr

PAcV > qaClC 2Vcos*qa_ _ _(czcos*,2q +(c 3sin,)2q_]+

(3.79)

2
qa

The term V--_ in the determinant of R s insures that R s will remain

positive definite, independent of the trajectory. Hence, we may derive

the filter for optimal estimation of the state variations, 5 s, according

to Kalman (2) employing equations (2.35) through (2.37).

With the system defined as

5__ = FSs_ + Gfuf_ (3.80)

where

F = [0A] + B
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with measurements

y = HSs_ + [ Gfl Ga] u m (3.81)

where H = Z + A,

the optimal estimate of s is obtained from integration of

5s_ = FSs_ + K (y_- (Z+A) Ss) (3.82)

where

QfGfT -I (3.83)K = ( PH T + Gf ) R s

and where the estimation error covariance matrix, P(t),

from

is obtained

1_ = F P + P F T + GfQfGf T - K RK T (3.84)

The additional term, GaQaGa T , in the matrix R s prevents the

direct reduction of the matrices F and GfQfGf T in equation (3. 84) as

was observed in section 2.3.2 (equation (2.71)) in the case of perfect

measurements. We note also that the negative term in (3.84) is in-

versely proportional to the magnitude of the covariance, qa ' of the

measurement noise. Hence a large uncertainty in the measurements

due to this noise would decrease the effectiveness of the filter. How-

ever, as the covariance, qa' approaches zero, the estimation errors

will approach those obtained from the dual filtering system.

Since no justification can be found for the white noise, u a , it

is difficult to assign a value to the variance of this noise. In order to

evaluate the effects of u s , however, an arbitrary value will be chosen

by assuming that, over a one second time interval, the accumulated
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velocity outputs of the accelerometers have an RMS uncertainty of

0.01 feet/sec., and that the correlation time, r associated with
a'

this uncertainty is 0.01 second. We then evaluate qa as

qa 2r a RMS _5-_- = (2) (0.01) (0.01) 2

qa = 2 x 10 -6 feetZ/sec. 3

The effect of an error of . 01 feet/sec.
2

on the accelerations, f
V

along the nominal trajectory is shown in Figure 3.13. We note

and f¥,

the

major effect of this error upon f and fy to occur during the initial stage

of re-entry and again as the vehicle ascends through a ballistic skip;

however, during portions of high acceleration, its effect is overcome

• by the acceleration dependent noises considered in section 3.4.
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CHAPTER IV

COMPUTER SIMULATION OF APOLLO

RE-ENTRY NAVIGATION SYSTEM

This chapter presents quantitative results obtained from a

computer simulation of inertial navigation systems employed during

a typical Apollo re-entry mission.

4.1 Digital Computer Program

The computer program employed to simulate the re-entry navi-

gation systems considered here is shown in Appendix A. The program

was written in the MAD language for use on an IBM 7094 computer with

a time-sharing facility and provides for numerical integration of the

nominal equations of motion for the state variables and of the navigation

error covariance matrix P. Integration is performed through a fourth-

order Runge-Kutta scheme. The roll control program is obtained from

tabular values through a third order Newtonian interpolation scheme.

The program is designed to study three types of navigation

systems :

1. A deterministic system for perfect measurements.

Z. A dual-filter statistical system employing alternate

use of Filters A and B (see section 3.6) with perfect

measurements.

3. A single filter statistical system employing only filter

A for perfect measurements with additive white noise.
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A
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4.2 Vehicle Parameters and Nominal Trajectory

Typical values of parameters for an Apollo command module

during re-entry were obtained from B. Crawford (27} as

Weight = 11,000 lb.

2
= Frontal Area = 129.4 ft.

= Angle of Attack = 22 degrees

C L
= Ratio of Lift to Drag = 0.3

The dependence of the lift and drag coefficients on the angle of

attack and sideslip angle, as approximated by equations (3.3), cannot

be found in the open literature. Without further knowledge of this de-

pendence, we will assume

CLo = Cyo = _ CL1 = _ Cy1

and CDo = - CDI = - CD2

From the known values of a and CL/C D , then, we obtain

and

CLo I. 1803

CDo I. 5107

The geodetic parameters assumed in this study are

R
e

go

= Earth Radius = 2.09029 x 107 feet

= Earth Rotation Rate = 7.292115 x 10 -5 rad./sec.

= Gravitational acceleration at Surface = 32. 2168 ft./sec. 2

The atmospheric density is approximated as

-_h
p = po e
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where

Po 2. 3769 x 10 -3 slug/ft. 3

and _ = 4.2553191 x 10 -5 feet -I

The nominal trajectory, assumed to be in an equatorial plane

about a spherical rotating earth, is obtained from equation (3.6) with

given initial conditions and roll control program. The initial conditions

in inertial coordinates were assumed to be

V(0) = 36,200 feet/sec.

y(0) = -6.0 degrees

h(0) = 400,000 feet

@(0} = 0 degrees

After conversion to a rotating coordinate system, we obtain

V(0) = 34655.5 feet/sec.

y(0) = -6. 268 degrees

The nominal roll control program was obtained from

B. Crawford (27) through a computer simulation of the proposed Apollo

guidance scheme developed by the MIT Instrumentation Laboratory.

The control program, as shown in Figure 4.1, is designed to achieve

a range of 2550 N. Miles (on a non-rotating earth} in an equatorial

plane with the above initial conditions. The ratio of lift to drag in the

plane of motion for this roll program is shown in Figure 4.2.

The nominal trajectory produced by the above initial conditions

and roll program is illustrated in Figures 4.2 and 4.3. All values

shown here are with respect to a rotating earth. The accelerations
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av and ay (defined by equation (3.16)) for this nominal trajectory

are shown in Figure 4.4.

4.3 Initial Covariance Matrix

Uncertainties in estimates of position and velocity at the start

of re-entry will be based on navigation errors during the midcourse

or trans-earth phase of the mission. A midcourse navigation error

analysis has been conducted by G. Levine (28) through a Monte Carlo

simulation of a typical Apollo trans-earth trajectory. The navigation

system in this analysis utilized celestial sightings to determine the

vehicle position and velocity. The results of fifty individual runs ob-

tained from this analysis were employed to compute the statistical

properties of initial navigation errors for re-entry. A short computer

program was written to convert deviations in inertial position and

velocity vectors to deviations in velocity, flight path angle, altitude,

and range, and to compute the statistical properties of these deviations.

The program and results obtained from it are shown in Appendix B.

From the results of this analysis, the following RMS values of initial

uncertainties were obtained

RMS(SV) = 23.92 feet/sec.

RMS(Sy) = 0. 183 degrees

RMS(Sh) = 27,155 feet

RMS(ReS@) = 137,090 feet

with correlation coefficients

PVy O. 99519

PVh -0. 99878
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Pv@ = 0.99536

= -0.99367
Pyh

= 0.99998
Py@

Ph@ -0. 99411

4.4 Results of Computer Simulation

Uncertainties in estimation of position and velocity have been

assumed within this study to be random errors with zero mean and with

statistical properties described by the covariance matrix

PCt) = _ [ (5 sCt)- 6_(t) ) (6 sCt) - 5_(t))T]

is the actual variation in the state vector and 5s (t) is thewhere 5s (t)

estimated variation. The differential equations for this covariance

matrix have been derived in Chapters II and Ill for the deterministic

and statistical navigation systems. In this section, we show a quan-

titative comparison of the RMS estimation errors as obtained from

these navigation schemes.

4.4.1 Deterministic Navigation with Perfect Measurements

In the deterministic scheme, navigation is performed by direct

integration of the specific force acceleration measurements and the

computed gravitational accelerations. The differential equation for the

estimation error covariance matrix with an assumed perfect IMU system

is shown by equation (2. Z4) to be

= B1 _ +pB T

absence of the term _Qg_T here since we have assumedWe note the

no random disturbances in the gravitational accelerations.
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The matrix

dynamics as

B -- [I0]

B is obtained from the linear model of the vehicle

where ]_ is defined by (3.32).

RMS uncertainties in V, y, h, and range obtained from this

simuIation are shown in Figures 4.5 through 4. 8.

In order to examine the effects of the high correIations in the

initial estimation errors, another simulation was made with an initialiy

uncorrelated error matrix, P(0). The results of this simulation are

aiso shown in Figures 4. 5 through 4.8. A very pronounced reduction

in the errors in estimation of veIocity and aititude is observed for the

initially correlated errors.

4.4.2 Statistical Navigation with Duai FiItering System

We now show the resuIts of navigating with statisticaI estima-

tion for assumed random disturbances due to atmospheric variations

and vehicle osciiiations. The filtering equations for this navigation

system were derived in section 3.6. It was found that, due to the in-

sensitivity of measurement variations to noise in the sideslip angle

when the sine of the roll angle is zero, that two independent fiiters are

necessary. Propagation of the covariance matrix for filter A during

is not equal to zero is obtained by the differentiaIthe time when sin

equation (3.33).

When sin approaches zero, filter B is brought into use.

Initial reduction of the covariance matrix is computed from equations
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(3.68) and (3.69) and the reduced eovariance matrix is computed ac-

cording to equation (3.67).

The switching logic employed in the computer simulation of this

dual filtering system is as follows:

If filter A is in operation at the beginning of an integration step,

a check is made at each time considered during integration of that

step on the absolute value of sin 4. If this value becomes less than a

threshold value, sin 4o, the integration is halted and filter B is put

into operation at the beginning of the time step.

If filter B is in operation at the beginning of any succeeding

integration step and if the value of sin 4 at that time is greater than

or equal to sin 4o, a switch is made to filter A.

Since the initial value of the roll angle in the nominal control

program being used is 180 degrees, a switch is immediately made to

filter B. Due to the perfect measurement obtained, and to the high

correlations between the initial estimation errors, a dramatic reduc-

tion is observed in all the estimation errors as shown in Table 4. i.

The significance of initial correlations in the estimation errors is noted

by applying the same reduction to initially uncorrelated estimation

errors. The results of this reduction, also shown in Table 4. l, show

a significant change only in the estimation errors for range and flight

path angle.
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5V 5¥ 5h Re6@
RMS Errors at t = 0

fps deg. mi. rni.

Before Measurement 23.92 .183 4.47 22.5

After Measurement 2.27 .0023 .475 .135
Initially Correlated

After Measurement 23.92 .164 4.47 9.87
Initially Uncorrelated

Table 4.1

Initial Reduction of Estimation Errors

due to Perfect Measurement

This behavior becomes apparent through examination of the matrix Z

relating variations in state to variations in the measurements in equa-

tion (3.27). Since the state variations 5y and 6O have an equal but

opposite effect on the measurements, a perfectly known linear com-

bination of the measurements should tend to reduce the errors in

estimation of 6¥ and 5@.

Three simulations of the dual filtering system were performed

to determine the effects of the initial correlations and of the threshold

value, go' employed in the switching logic. Values of go of 0. I and

5.0 degrees were studied for the initially correlated case and 5.0

degrees was employed for the simulation of initially uncorrelated errors.

The results of these studies are shown in Figures 4.9 through 4.12.

We note additional discontinuous reductions in the estimation

errors at times of 38, 120, and 592 seconds as the vehicle is rolled

through angles of 0, 180, and 360 degrees, respectively. The initially

uncorrelated case does not reveal dramatic discontinuities until sig-

nificant correlations are encountered.
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The choice of go is seen to have an almost insignificant effect

on the estimation of all state variables except that of altitude for which

the effect is seen to be quite large.

4.4.3 Statistical Navigation with Single Filtering System

A single filter navigation system was derived in section 3.7 with

the assumption of additive white noise entering through the measurement

system. Due to the difficulty in assigning a value to the covariance of

this additive noise, two simulations were performed for values of the

covariance, qa' of 2.0xl0 -6 and 5.0xl0 -5 feetZ/sec. 3, corresponding

to RMS errors in acceleration measurements of 0.01 and 0.05 feet/sec. 2,

respectively, and to correlation times of 0.01 second.

The results of these simulations are also shown in Figures 4.9

through 4.1Z. The differences in estimation errors obtained for the

two values of qa are almost indistinguishible over most of the flight.

Comparing these results with those obtained with the dual filtering

system, we note a continuous, yet equally dramatic reduction of the

initial estimation errors. Within a time of 50 seconds, the RMS errors

in velocity and altitude are almost identical with those obtained with the

perfect measurement system. An increase in these errors is then noted

due to the increased effect of the noise, u a, on the measurements as

observed in Figure 3.13. The RMS errors in the flight path angle and

range also descend rapidly during the initial 10 seconds, but level off

to a value somewhat higher than that obtained initially with the dual

filtering system. A steady descent is then observed towards the lower

dual filter errors. The rapidly ascending errors in estimation of flight

path angle near the end of the simulation is observed in all navigation
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systems due to the large increase in flight path angle shown in Figure

4. Z.

4.5 Numerical Difficulties

A discussion of results obtained through numercial integration

of a matrix Ricatti equation such as (3.33} would generally be incom-

plete without a section devoted to numerical difficulties.

An examination of the negative term in (3.33) shows this term to

be inversely proportional to the covariance matrix, R, of the measure-

ment noise, as was observed in section 3.6.3. As R approaches condi-

tions of singularity, the derivative of the matrix P grows rapidly in the

negative direction, thus reducing the covariance of estimation errors.

Although the matrix P should theoretically remain positive semi-definite,

errors encountered through truncation and roundoff within the digital

integration scheme force it to become negative definite and henceforth

totally unstable. This condition is enhanced when high correlations are

present in the covariance matrix.

In order to overcome this difficulty, it was found necessary to

reduce the size of the time step employed by the Runge Kutta integration

scheme until a stable integration of the covariance matrix was obtained.

An empirical time step as a function of time was thus derived for each

filter simulation to provide for minimum total computer usage and for

stability of the integration. The time steps used for each simulation

are shown in Figure 4.13. We note that extremely small time steps

-6
were necessary for integration of the single filter with qa Z. 0xl 0

due to the comparatively low value of the R matrix, Due to the number
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of integration steps required for stability of the P matrix, the total

computer usage for each simulation was extremely high as shown in

the table below.

Simulation

Deterministic

Dual Filter- -Uncorrelated P (0),

_O=50

Dual Filter- -Correlated P (0),

_o=50

Dual Filter- -Correlated P (0),

_o = .i°

Single Filter--qa = 2. x 10 -6

-5
Single Filter--qa 5. x 10

Number of

Integration Steps
Computer Usage

(Minutes)

350 1

28,000 21

34,000 26

52,000 39

360,000 68

103,000 43

It is felt that increased stability and decreased computation

time could be obtained with the use of double precision and a predictor-

corrector type numerical integration scheme such as the Adams-Moulton

method within the computer program. The insertion of such into the

present program would have required a major revision - not only of the

program, but of the coding language - and was hence deemed unfeasible

at the time. It is recommended that future studies of such systems be

conducted with the above numerical difficulties in mind and that the

numerical integration programs be designed accordingly.

4.6 Summary of Results

The results obtained from simulations of the three navigation

schemes described above show that, in general, the statistical



122

navigation schemes are effective in providing better accuracy in navi-

gation than the conventional deterministic scheme.

The acute decreases in estimation errors obtained through the

perfect measurement with the dual filtering system follow closely the

theoretical results suggested in section 3.6.3. These reductions are

also found to be highly dependent on the correlations in the estimation

errors immediately before the switch to filter B is made.

If the initial estimation errors are highly correlated, the results

obtained from the dual filtering system would suggest the necessity of

statistical filtering only during the first few seconds after the employ-

ment of filter }3, i.e., after the roll angle reaches 0° or 180 °, to reduce

the initial estimation errors. After these errors have been sufficiently

reduced, the statistical system would provide little advantage over a

deterministic one when the measurements contain no white noise. Any

additional navigation errors due to bias random errors or colored noise

could only be reduced by adding state variables to be estimated by the

statistical navigation system. If the initial estimation errors are un-

correlated, however, insufficient information is provided by the perfect

measurement obtained when sin _ = 0 to reduce errors in estimating the

velocity and altitude immediately. Thus, the dual filtering statistical

navigation system should be employed throughout the flight.

The acceptance of the dramatic reductions exhibited by the dual

filtering system would be based on total acceptance of the validity of the

assumptions of a measurement system containing no white noise and of

white noise entering the aerodynamic forces primarily through angular

motions of the vehicle. Due to limited availability of quantitative data
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concerning random errors present in aerodynamic forces during

re-entry and concerning high frequency random errors in inertial

measurements, it is impossible at the present time to provide such

total acceptance.

The single filtering system includes the effects of an additive

white noise entering through the measurement system. Although the

results obtained with this system appear to be independent of the mag-

nitude of this noise source within the range of values considered, the

accuracy obtained with this system is found to be generally lower than

that resulting from the dual filter, yet considerably higher than that

derived from a deterministic scheme.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

This research has investigated the statistical inertial naviga-

tion of vehicles accelerated primarily by non-gravitational forces during

short intervals of time. The source of information for the navigation

system is an inertial measurement unit with assumed random constant

error coefficients.

Due to the absence of white noise in the accelerometers, the

high frequency measurement uncertainties are derived solely from

white noise in the specific force accelerations observed by the meas-

urement system. The design and effectiveness of the filter to be in-

corporated in a statistical navigation scheme was found to be based on

the linear dependence of the measurements on these white noise sources.

If an insufficient number of white noise elements are present to provide

measurements which contain independent white noise elements, then

perfect measurements are realized which allow dramatic reductions in

estimation errors and which require differentiation before an optimum

filtering system can be designed. If the number of independent white

noise elements driving the totai acceleration of the vehicle is less than

or equal to the number of measurements, then the estimation errors

in navigation of an observable system are asymptotically reduced to

zero when statistical estimation is employed.
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Non-gravitational accelerations encountered by vehicles would

be derived from propulsive, aerodynamic, or hydrodynamic forces.

Due to the independence of thrusting forces on the state of the vehicle,

it was found that no advantage could be realized through a statistical

navigation scheme during thrusting over the conventional deterministic

system. Since aerodynamic forces are dependent on the vehicle's

velocity and altitude, however, significant improvement in navigation

accuracy can be realized through statistical estimation.

A statistical navigation system was developed for a simplified

two-dimensional Apollo re-entry mission. With the assumption that

relatively high frequency vehicle oscillations are the primary sources

of white noise random errors perturbing the aerodynamic forces, it

was found that such a navigation system would require two independent

statistical filters for alternate operation depending on the vehicle atti-

tude. Computer simulation for a typical Apollo re-entry trajectory re-

vealed dramatic improvement of navigation accuracy due to the inclusion

of statistical estimation in the navigation system. The effectiveness of

this improvement was found to be highly dependent on the correlations

present in the initial estimation errors.

The dual filtering system, however, was found to be cumber-

some and would be rendered impracticable for a real time navigation

system due to the necessity for two independent filters, for switching

logic, and for the differentiation of measurements. The inclusion of

arbitrary additive white noise in the measurement system provided for

the derivation of a simplified navigation system requiring a single filter.

Results from computer simulation of this single filtering system
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approached those displayed by the dual system and were found to be

independent of the magnitude of the noise source within the range of

values considered.

The simplified single filtering system allowed a computation

time per integration step of 0.25 second with an IBM 7094 digital com-

puter, as compared with 0.45 second required for the dual system. Due

to instability in integration of the estimation error covariance matrix,

however, a requirement for smaller integration step sizes forced the

total computation time for the single filter simulation to be higher than

that required for the dual filtering system.

Unless a more accurate integration scheme is employed which

will allow stable numerical integration of the covariance matrix with

time steps exceeding the computation time per step, neither the single

nor dual system could be recommended as a practicable real-time

closed loop on-board navigation system.

An alternative navigation scheme would be an open loop statisti-

cal filtering system employing pre-calculated filter gains from assumed

nominal roll control programs. No attempt was made within this study

to examine the dynamics of the filter gains or to study the effects of

employing gains obtained from one nominal trajectory to filter measure-

ments secured along a different trajectory.

A major point made within this thesis is the limited knowledge

of the statistics of variations in atmospheric properties within the re-

entry altitude range. It is recommended that further study be made to

determine more accurately the statistical properties of error sources

involved in the prediction and measurement of aerodynamic forces.
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Continued effort should be directed toward the design of numer-

ical integration schemes which will provide increased stability of the

covariance matrix integration and thus allow the navigation schemes

presented herein to be deemed practicable for closed-loop real time

navigation. It is also recommended that consideration be extended to

the estimation of major error coefficients in the IMU as well as the

state of the vehicle.
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APPENDIX A

DIGITAL COMPUTER PROGRAM FOR SIMULATION

OF APOLLO RE-ENTRY NAVIGATION SYSTEMS
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S JAR1"

R MAIN PROGRAM FOR FILTERING OF P_RFbCT M_ASURbMhNTS

R

PROGRAM COMMON XIN(5)oX(5),XX(5),DX(ZO),PII'_(25},Pi25)

i PP(25) tDP(lO0) tC(5Ol,N(30) tY(30) tf (10) tCT{ 1000)

INTEGER I,N,MINT,DELPRT,DUM,SUPPRT,YESORN,NX,NP,DELM_-S,M_'_b

INTEGER J,L, M,LL, IJ, IL,LJ,LM,NP2,ROTATE

DIMENSION SIGM-',(5), CORRE(IO)

R

R ASSIGN INPUI CONSTANTS

R

EXECUTE GETTM._DATE,RUNTIM)

V'S WEIGHT = 11000.0

V'S AREA = 129.4

V'S CDU = 1,51L_7301

V IS CLO = i, 18u3427

VIS CDI = - 1,5107301

V_S CL1 = - 1,1803427

V'S EARTHR = 2,09029057

V'S ERATE = O,7292115E-L*

V'S FTTOMI = 6080.2

V'S RHO = 0.0023769

V'S BETA = 4.2553191E-5

V'S GO = 32,216832

V' S Pl = 3, [415926

VIS PHI = _.0

V'3 VrL = 3020_,0

V'S Vd = 2._)_+4.042

VIS VELTH = 0,_

V IS GAMMA = -6.0

VIS ALPHA = 22.0

V IS ALT z 4000JO,O

V'S RANGE = 0,0

VtS KO = 0°0

V'S KI = 0oi

V°S K2 = 0,2
V o S MEAS = 2

V'S SIGMA( I )=23,92,0,183,4,4661426,22o _46V_2,2°Oi-il

VIS CORRE (i) =°995 19 t-° 99878,,99536,0, t-o99_6 / , °v_,O,O

VIS CORRE (8) "-,99411,0,0,0,0

VIS SIGAC = O,ul

VIS SIGALP = 0,0125

VIS SIGZET = 0,O125

VIS TIME " OeO

VIS T(6) = -ieu

VIS DELTA[ " 2,0

VIS HMEAS = 410000,0

VtS ALTFIN " 100000,0

V'S MINPHI " 5,0

VIS N(2I • i

V' S N(i0) • 2
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VIS NX : 4

V'S NP == 5

VtS MINT " 5004

VECTOR VALUES ROTATE " 1

VIS DELPRT = 10

VIS SUPPRT = I

R

PRINT FORMAT TITt. Eo DATr. t RUNTIM

PRINT FORMAl NEWDAT

READ AND PRINT DATA

WIR MEAS ,E, 2 ,AND, HMLAS °L, 4°0_, pit bLC_rL], mMuA3

VtS bEGFLT : $1H, FILTERING ONLY bELOWo,,-9,I,OHPE_I,_$

R

R COMPUTE CONSTANTS

R

C(l) = PI/180,u

C(2} : 180,O/PI

AL : ALPH_ * C(i)
DT2 = 2°0

C(9) = AREA * GO / (2,0 * WEIGHT)

CD : CDO + CD1 * AL,P°2

CL : (CLO + CLI * AL.P.2) * AL

C(3) : C(9) * CD
C(4) = c(g) * CL

C(5) = GO

C(6) = EARTHR

C(7) = RHO

C(8) : - BETA * C(6)

C(IO) = 2,0 * CDI * AL / CD

C(ll) - (CLO + 3,O*CLI*AL°P,2) / CL

C(12) = C(IJ) / C(II)

C(13) = 1,0 - C(12)

C(14) : VELTH / C(6)

C(16) = HMEAS / C(6)

C(15) : SIN,(MINPHI * C(1))

C(17) -- ALT,:IN / C(6)

C(18) : ((_IGACIVO),P,2)*,02

C(20} : I,0 / FTTOMI

C(21) = (SIGALP ,P, 2) * DT2

SDT2 = SQRT,(-Z,O*C(8))

C(23) : KO * SDT2

C(24) = (4,0*Ki - K2) * SDT2 / 3,0

C(25) = C(6)*(K2 - K1) * SDT2 / 3,0E5

C( 28 ) -- VO

C(31) : 2,0 * ERATE

C(32) :: C(6) * ERATE * ERATE

C(40) -- (C(IO) * SIGALR) ,P,2 * DT2

C(41) : C(lO) * C(II) * SIGALP,P,2 * DT2

C142} m I|CD + CLO) * SIGZET I CL),P,2 * DI2

C(43) : (C(ll) * SIGALP) ,P, 2 * DT2
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PZERO

Y(6) = PHI * Cil)

Y(7) = COS.(Y(6))

R

COMPUTE iNITIAL CONDITIONS

R

WHENEVER ROTATE .E,I

X(O) = GAMMA * C(1)

X(3) = ERAIE*(L(6) + ALT)tVEL

X(4) = X(3)/CO_.(X(O))
X(5) = SQRT.(I.O + X(3)_X(3)_(IoO-_._/X_,:_))) * #LL

X(6) = ASIN.(SIN.(X(O))_VEL/X(5))

XIN(1) = X(b)/L(28)

XIN(2) = X(6)

OTHERWISE

XIN(1) = VEL / C(28)

XIN(2) = GAMMA * C(1)

END OF CONDIIIONAL

XIN(3) = ALT / C(&)

MILE = C(6) _ C(20)

XIN(4) = RANGE / MILE

VSIG = SIGMA(1)

GAMSIG = SIGMA(2)

HSIG = SIGMA(3)

RSIG = SIGMA(4)

SIGRHO = blGMA(5)
RHOVG = CORRE(l)

RHOVH = CORRE(2)
RHOVR = CORRE(it)

RHOVP = CORRE(4)

RHOGH = C_)RRE(5)

RHOGR = CORRE(6)
RHOGP = CORRE(7)

RHOHR = CORRE(8)

RHOHP = CORRE(9)

RHORP = CORRE(IO)

SIGV = ,ABS,(VSIG/C(28)}
SIGGAM = ,ABS,(GAMSIG_C(1))

SIGH m .ABS,(HSIGIMILE)

SIGR = ,ABS,(RSIGIMILE)

TIH PZERO, FOR I _ ltltI,G,25

PIN(1) " 0,0

PIN(l) • SIGV ,P, 2

PIN(2) = SI6V _ SIGGAM * RHOVG

PIN(3) = SIGV w SIGH * RHOVH

PIN(4} = SIGV * SIGR _ RHOVR

PIN(5) = SIGV*SIGRHOWRHOVP

PIN(6) " PIN(2)

PIN(?) • $1GGAM_SIGGAM

PIN(B) • SIGGAM * SIGH * RHOGH

PIN(9} = SIGGAM * SIGR * RHOGR
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READCD

NOMNAL

INI'X

INITP

PIN

PIN

PIN

PIN

PIN

PIN

PIN

PIN

PIN

PIN

PIN

PIN

1u) = SIGGAMWSIGRHO_RIIOGP

11) = PINIB)

12) = PIN(8)

13) = SIGH _ SIGH

14) = SiGH _ SIGR _ RHOHR

lb} = SIGH w SIGRHO * RHOHP

16) = PIN(4)

17} = PIN(9)

18) = PIN(i4)

19) = SIGR _ SIGR

2U) = SIGR*SIGRHO*RHORP

21) = PIN(b)

PIN(22) = PIN([0)

PIN(23) = PIN(IS)

PIN(24) = PIN(20)

PIN(25) = S_GRHO * SIGRHO

T(9) = TIME

T(IO) = DELTAT

N(1) = MINt

N(I1) = DLLPRT

N(13) = NX

N(14) = NP

N(9) = MEAS

N(26) = SUPPRT

WHENEVER N(2)oE,OtTRANSFER TO NOMNAL
R'T NCARD9 N(3;

T'H READCD, FOR I = I,I,I.G.N(3)

J = 8"(I-i) + 4

R'T CARD, CT(J)...CT(J+7)

CONTINUE

VtS NCARD = $13"$

VIS CARD = $4(FS.0,EI3.8) _$

N(3) = 8-N(3) + 3

N(2) = 0

R

NP2 = NP * NP

T(1) = T(9)

T(2) = T(IO)

TIH INITXt FOR I = I,I,IoG.NX

X(1) = XIN(1)

TIH INITP, FOR I = I,I,I.G.NP2

P(1) = PI'_(I}

EXECUTE RUNKUT.(O,ERRET}

EXECUTE DERVlV.(O)

R

R INTEGRATION

R

TIH INGRAT. FOR LL - 1,1tLL.G.MINT

LL = LL

EXECUTE CDELT.(LL)
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INGRAT

ERRET

FINAL

ITERAT

EXACT

QUIZ

EXECUTE" RUNKUT.(LLtERRET)
WtR X(3) ,LE, C(17)t ToO FINAL

CONTINUE

PRINT FORMAT FAILEDt MINT

TRANSFER TO QUIZ

TIH ITERATt FOR I = ltltI.G.5

WtR .ABS.(C(I?)-X(3}) .LE. 5.E-Bt TIO EXACT

DHDT = C(28)*X(1)*Y(8)/C(6)
T(2) = (C(17) - X(3)) / DHDT

N(25) = N(11)

EXECUTE RUNKUT.(LLtERRET)
WtR N(2b) .E, 3, TIO QUIZ

EXECUTE RUNKUT.(-ltERRET)

VtS FAILED = $///IH 14t68H INTEGRATION STEPS PERFORMED WITHO

1UT SATISFYING STOPPING CONDITION. *$

PRINT FORMAT A_K
VIS ASK = $///52H CONTROL RETURNED TO MAIN PROGRAM AND RUN CO

1MPLETED, /45H DO YOU WISH TO CONTINUE THROUGH ANOTHER RUN

2 /*$

READ FORMAT ANSWERtYESORN
VIS ANSWER = $C6 *$

WtR YESORN iE. SYES St TtO START

EXECUTE EXIt,
VIS TITLE = $7_HI STUDY OF NAVIGATION SYSTEM WITH FILTERING O

IF PERFECT MEASUREMENTS 2C7 *$

V'S NEWDAT = SH.O ***FOLLOWING IS ALL NEW DATA SUBMITTED FOR

_,THIS RUN **_./_$

EtM
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BEGIN

TABLE

AUX

D IAGO N

SINGLE FILTER INTEGRATING ROUTINE

SUBROUTINE RUNKUT

EXTERNAL FUNCTION (STEPNO)

PRUGRAN COMMON XIN(Si,X(5).XXISi,DXI20),PIN(25).P(25)o

PP(Zb),DPIIOO),CI5OI,N(30),YI30),I(IO),CfIIO00)

INTEGER I,JgKtNgLL_LL1,NX,NX2_NX3,NENFgSTE_NOtNORTAB

INTEGER NgNP,NP2,NP22oNP23,MEAS

DIMENSION DT(#), TAB(8), R(3)

ENTRY TO RUNKLJT.

W'R STEPNO .G.O

T'O ENTRY

O'R STEPNO .L. 0

TIO PRINT

OTHERWISE

T'O BEGIN

END OF CONDITIONAL

DT(2) = 0.5

DT(3) : O, _

DTI4) = 1°0
MILE = C(6I*C(20)

NX = N(13)

NP : N(14)

NP2 = NP *

NP22 = 2 *

NP23 : 3 *
MEAS : N(9

WtR X(3) °

NX2 : 2*

NX3 : 3*

WtR N(IO)

TIH TABLE,

NP

NP2

NP2

)

G° C{16),

NX

NX

°ME. 2,

FOR I

TA_(1) : CT(I+3)

NENT = 7

EXECUTE AUXLRY.

N(25) = 0

EXECUTE CDELT.(O)

N(9) = 0

T'O AUX

= ltl,l,G,_

W'R N(26) .G. ], T'O RETURN

PRINT FORMAT PGSKIP

PRINT FORMAT HEADI

pIT XOUT, T(lI,X(1)*C(28),X(2}*C(2}tX(3)*C(6)_X(_)*MILE,

Y(6)*C(2),Y(5)

PRINT FORMAT HEAD2

TIM DIAGON, FOR I = I,I,I.G.5

J = 5"(I-i) + I

DP(1) = SQRT,|PIJ})

P'T SIGMA9 DP(1)*C(28),DP(2)*C(2),DP(3)*MILE,DP(4)_MILEgDP(b)

I = 1

J = 1

T'H CROS, FOR K = Iol,K°G. IO
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GOUNN

CROS

ENTRY

XINIT

PINIT

XSlFp

P51EP

LUUP

NLwx

NEWP

TSTPNG

J = J + i

WIR J .LE. 5, I'0 GOONN

I = I + i

J " I + i

LL - 5"(I-I} + J

DP m DPII) * DP(J)

DP(K+5} " P(LL) / DP

pIT CORREt DP(6),..DP(15)

FON

T'H XINIT, FOR I : I,I,I.G,NX

XX(l} - X(1)

TIH PINIT, FOR I = ltltI,G.NP2

PP(1) = P(1)

R

R COMPUTE DERIVATIVES

R

EXECUTE DERVlV. (i)

T(3) : T(1)
TIH LOOP9 FOR VALUES OF LL = 2t3,4

DEL = T(2) * DT(LL)

T(1) = T(3} + DEL

LL1 = NX * (LL - 2)
TIH XSTEP, FOR I = ltltIeG.NX

X(I} = XX(I) + DX(LLI+I) * DEL

EXECUTE AUXLRY.

LLI = NP2* (LL-2)

T'H PSTEP, FOR I : I,I,I,G,NP2

P(1) : PP(1) + DP(LLI+I} * DEL

R

EXECUTr DERIIV. (LL}

CONT INUE

DEL = DEL / 6,L_

TIH NEWX, FOR I -- I,I,I.G.NX

X(1) = XX(1)+(DX(1)+2.*(DX(I+NX}+DX(I+NX2)}+DX(I+NX3)}*DEL

EXECUTE AUXLRY.

WeR X(3} ,G, C(16}

N(9) : 0

O'E

N(9) : MEAS

EOL

TIH NEWPt FOR I - ltltI.G.NP2

P(1) " PP(1) + (DP(I} + 2.*(DP(I+NP2) + DP(I+NP22}}

1 + DP(I+NP23)) * DEL

THROUGH TSTPNG, FOR I = 1,691,G.25

WOR P(1) .L, O°Ot ToO PRINT

CONTINUE

R
WHENEVER T(1) .L° T(6)t FUNCTION RETURN

N(25) :. N(25) + 1

WIR N(25) ,E, N(11)9 TIO PRINT



149

RETURN
PRINT

DIAG

GOON

CROSS

NEGP

CONTRL

INTERP

FLJNCTION RETURN

N( 25 ) -- 0

WIR N(26) ,,_, 29 FIN

PRINT FORMA[ XOUT, T(1),X(1)*C(28),X(2)*C(;,)tX(3)wC(6)t

1 XI4)*MILE,Y(6)*C(2) ,Y(5)

T'H DIAG, FOR I = itloI,G,5

J = 6"I - 5

DP(1) = SQRT,(P(J),NEGP)

P'T SIGMAt DP(I)*C(28)tDP(2)*C(2),DP(3)*MILE,DP(4)'x-MILEtDP(5)

Vtb SIGMA = $1HO 5E18,8 *$

I = 1

J = 1

TIH CROSS, FOR k = I,I,K,G,IO

J = J + i

W'R J ,LE, 5, T'O GOON

I = I + 1

J = I + 1

LL = 5*(I-l) + J

DP = DP(1) * DP(J)

DP(K+5) = P(LL)/DP

P'T CORRE, L)P(6),,,DP(15)

V'S CORRE = $11-I IOF12,B,/w$

F'N

P'T PNEG, I, P(1),,,P(25)

VIS PNEG = $//31H P MATRIX DIAGONAL ELEMENI NO, 13,

1 21H HAS BECOME NEGATIVE, /29H THE ENTIRE P MATRIX FOLLOWS,

2 I/ 5(bE16,8,/) *$

ERROR RE TURN

R

R

R SUBROUTINE AUXLRY

R

R

INTERNAL FUNCTION

ENTRY TO AUXLRY,

Y(4) = I°0 + X(3)

Y(O) = C(5) / Y(4},P,2

Y(5) = C(7) * EXP,(C(8)*X(3))

Y(8) = SIN,(X(2))

Y(9) = COS,(X(2))

Y(15) = C(23). + (C(24}+C(25)*X(3)) * Y(5}

WIR T(1),LE,TAB(3) ,OR, NENT ,GE, N(3), TIO INTERP

TAB(1) = TA'3(3)

TAB(2} = TAB(4)

TAB(3) " CT(NENT+I)

NENT = NENT + 2

TAB(4) " CT(NENT)

TRANSFER TO CONTRL

Y(6)=TAB(2)+(T(I}-TAB(1))*(TAB(4)-TAB(2}}/(TAB(3)-TAB(1))

Y(7) " COS,(Y(6))
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R " C(28) * Y(5) * X(1)
Y(16) : - C(3) * R * X(1)
Y(IO) = C(4) * R
Y(17) = Y(IO) * Y(7)
Y(1) - - Y(IO) * SINe(Y(6))
F_N
EtN

R
R

VeS XOUT - ,_IH F9.5oFI3.3,F14.7tFI3._,FI5.6_F10.29_'12.4 *$
VIS PGSKIP : $111H S20,30HINTEGRATION OF 51ATE VARIABLES*$
VIS HEADI= $/I/IH S2tZ+HTIMESBt_+HVLL,SIO_SHGAMMASBt4HAI-T,

ISIltSHRANGES6,3HPHIS7,3HRHO / IH S2,4HSEC,SBtSHFPS, sgt

2 4HDEG,Sgt'_HFI,SI2tSHNoMI,S6t4HDEG, b3910HSL,/CUeFT,/_$
V'S HEAD2 : $1_OSlO,26HERROR COVARIANCE MAIRIX, P /*$

R
END OF FUN(ST ION
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FZERO

ENTRY

R SINGLE FILTERING OF PERFECT MEASUREMENIS

R _UBROUTINE DERVIV

R

EXTERNAL FUNCTION ILL)

PROGRAM COMMON XlN(5),X(5},XX(5),DX(20),PIJ_(25),P(2_),

1 PP(25),DP(IOO),C(50),N(30),Y(30),[(IO),Cl(IO00)

INIEGER I,J,L,H,N,IJ,IL,LM,LJ,JLiLL,LLX,LLPiNP,NP2

DIMENSION F(25),FI25),HIIO),KIIO),PHIIO),Q(_),R(4),RI(4)

R

ENTRY TO DERViV,

WIR LL .G. O, TIO ENTRY

NP = N(14)

NP2 = NP * NP

THROUGH FZERO, FOR I " 1,1,1.G.25

F(I) = OpO

F'N

Xl = C(28} * X(1)

FV = Y(16)

FG = Y(17)

Y(22) = Y(4} * C(32) / C(28)

Y(21) = Y(8) * Y(22)

Y(22) = Y(9) * Y(22) / X(1)

Y(24} = - Y / C(28)

Y(23) = Y(24) * Y(8)

Y(24) = Y(24) * Y(9) / X(1)

_UM1 = Y(21) + Y(23)

SUM2 = Y(22) + Y(24)

LLX = 4*ILL-I)

DX(LLX+I) " FV + SUM1

DX(LLX+4) = Xl * Y(9) / (Y(4) * C(6))

DX(LLX+2) = FG + DX(LLX+4) + C(31) + SUM2

DX(LLX+3) = XI * Y(8) / C(6)

A = (Y(22) - 2.0"Y(24)) / Y(4)

Q2 = Y(15)*((15)*(.ABS.(DX(LLX+3)) + C(14)}

R

R COMPUTE F MATRIX

R

FIll) = DX(LLX+3) / X(1)

F(12) = DX{_LX+4} * Y(4)

F(16} = DX(LLX+4) / X(1)

F(17} = - DX(LLX+3} / Y(4)

F(18) = - DX(LLX+4) / Y(4}

F(1) = 2*FV/X(1)

F(2) = SUM2 * X(1)

F(3) = (Y(21) - 2.0*YI23))/Y(4) + CI8)*FV

FI5) = FV / Y(5)
FI&) = F(16) + (FG-SUM2)/X(1)

F(7) = F(17} - SUM1/X(1)

F(8) = A + F(18} + C(8)*FG

F(IO) = FG / Y(5)
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F(25) = C(8} * .ABSe(DX(LLX+3))

R

Q(1) = FV*FV*C(40)

Q(2) = FV*FG*C(_.I)

Q(3) = Q(2)

Q(_) = FG*FG*C(k3) ÷ C(42)*Y(1)*Y(1)

LLP = NP2*(i..L-Z)

R

R
T'H PDOTlt FOR I = ltltl.G.NP

M = NP*(I-i)
T'H PDOTlt ,:OR J = ltltJ.G.NP

LM : NP*IJ-I)

IJ : M + J + LLP
DP(IJ) : 0.0

T°H PDOT], FOR L = 191_LeGeNP

IL = H + L

LJ = NP*(L-1) * J

JL : LM ÷ L
DP(IJ) = DP(IJ) + P(IL)*P{LJ) ÷ _([L)*F(JL)

DP(LLP+I) : DP(LLP+I) + O(1)

DP(LLP+2) = DP(LLP*2) + Q(2}

DP(LLP+6) = DP(LLP+6) + Q(3)

OP(LLP+7) = DP(LLP+7) + O(4)

DP(LLP+25) = DP(LLP+25) + U2

W°R N( D oEC u, F0N

R

R
R(1) = Q(1) + L(18)

R(2) = O(2)

R(3) = O(3)

R(a,) = 0(_) + C(18)/X(] ),P,2

A1 = R(I)*R(_,) - R(2)*R(3)

R1(1) = R(4) / A1

R1(2) = -R(B) / AI

RI(3) : RI(2)

RI(_) : R(1) / A1

H(1) = 2.0 * FV / X(l}

H(2) = - FG * X(1)

H(3) = C(8) * FV

H(4) =- H(2)

H{5) : FV I Y(b)
H(b) = 2 * FG / X(1)

H(7) = FV / X(i)

H(8) = C(8) * FG

H(9) = - H(l)

H(IO) : FG / Y(5)

R

THROUGH PHT9 FOR ] = ltltIoG,,5

LM : 2* I
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PHT

ADDGS

FORMK

KR_.[

PDOT2

PH(LM-1) = u.O

PH(LM) = 0,0

THROUbH PHT, FOR J m 1,1,JoOo5
IJ = 5"(I-1) + J

FH(LM-1) = PH(LN-1) + P(IJ)*H(J)

PH(LM) = QH(L_i) + _(IJ)_H(J+5)

THROUGH ADDGSt FOR I = ltl,I,G.4

PH(I) = PH(I) ÷ Q(I)
THROUbH FORMK_ FOR I = itl,l,G,5

IJ = 2"I

_(IJ-1) = Pm(IJ-1)_RI(1) + PH(IJ)*RI(3)
_{ iJ) = PH(IJ-1)*RI{2) ÷ PH(IJ]*RI(_)

THROUGH KRK i, FOR I = l,ltl,G,5

TMR_U_H KRKFt FOR J : ltltJ,G,5

IJ : )*(1-1) + J

IL : 2"I

LM : 2*J

E(IJ) : KIIL-1)*IRII)_K(LM-1) + RI2)*KIL_)) + KIIL)*IR(3) _

i _(LM-1) + ,_(#)*K(LM))

R

R FINAL DERIVATIVE OF P MATRIX

R

THROUGH PDOT2_ FOR I = ltl_I.G.NP2

DP(LLP+I) = DP(LLP+I) - E(1)

F'N

E'N
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tSt:b 1N

I A_LE

ALJX I

PRT

DIAGON

R DUAL FILTER INTEGRATING ROUTINE

R SUBROUTINE RUNKUT

R

EXTFRNAL FUdCTION (STEPNO)

PROGRAM COMMON XIN(5)tX(5)tXX(5)tDX(20)tPIN(25)�P(25)_

1 PP(25),DP(lOO)tC(50),N(30),Y(30),T(1G),CTIlO00)

INTEGER I,J,K,N,LL,LLI,NX,NX2,NX3,NENltSTEPNO�NORIAB

INTEGER M,NP,NP2,NP22,NP23,COUNT,L,IJtIK,KL,LJ

INTEGER MEA5

DIMENSION _[(#), TAB(8), R(3)

ENTRY TO RUNKUI.

W'R STEPNO .G.u

TIO ENTRY

O'R STEPNO .L. 0

EXECUTE PRINTS,(FRRETI
FIN

OTHERWISE

TIO BEGIN

END OF CONDITIONAL

DT(2) = 0.5

DT(3) = 0.5

DT(4) = 1.0

MILF = C(61-C(201
C(18) : 0,O

NX = N(131
NP = N(I_)

NP2 = NP _ NP

NP22 = 2 * NP2

NP23 = 3 * NP2

MEAS = N(_)

WHENEVER X(31 .G.

NX2 = 2 * NX

NX3 = 3 _ NX

W'R N(IO) oNEo 2, I°O AUX1

TOH TABLE, FOR I = 1,1,1.G.4

TAB(1) = CT(I+3)

NENT = 7

EXECUTE AUXLRY.(PRT)

N(25) = 0

EXECUTE CDELT.(O)

WIR N(26) ,G, i, TIO AUX2

PRINT FORMAT PGSKIP

PRINT FORMAt HEADI

C(16), N(91 = 0

PIT XOUT, T(1),X(1)*C(28),X(2)*C(2),X(3)*C(6),X(4)*MILE,

I Y(6)*C(2)gPHIDOT*C(2)_Y(5)

PRINT FORMAT HEAD2

TtH OIAGON, FOR I = I,I,I.G.5
J : 5"(I-I) + I

DP(1) = SQRT,(P(J))

PIT SIGMAo DP(1)*C(28),DP(2)*C(2),DP(3)*MILE�DP(W)*MILC,OP(D)
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GOONN

(RO.%

AUX2

,%QUAS_

ENi RY

INiTAL

XINIT

PlNIT

X.b [_P

PSTFP

LUOP

NEWX

I = I

J = i

TIH CROS, FOR ,. - I,I,K,G, IO

J : J + i

W'R J .LE, b, lid GOONN

I = I _ I

J = I + i

UL = b_(I-i) + J

DP = DP(I) "* DP(J)

DP(K+_) = P(LL) / OP

P'T CORRE, OP(b),,oDP(ib)

ExECoT:.. AUT<LRII' • (SQUASH)

I='N

EXECJT/ 14,LI,UCE, ( E RRET)

F,N
_'k N( I_),E,4,AND,,ABS, IY(2) ),GE,Cllb) ,EXi'-tUlt. XPAiI'iD, {EI._RET)

COUNT = 0

TIH XINIT9 FOR I = I,I,I,G,NX

XX(1) : X(1)

TIH PINITt FOR I = I,I,I.G.NP2

PP(1) = P(1)

COUNT = COU!_IT + 1

WIR COUNT ,G, _,, T'O WRONG

e

R COMPUTE DERIVATIVES

R

EXECUTE DERVIV. (17

T(3) = T(1)

T_H LOOP, FOR VALUES OF LL = 2t_t4

DEL = T(2) _ DT(LL)

I'(i) = T(3) + DEL

LL1 = NX * (LL- 2)

ItH XbTEP, FOR I = 1,1,I.G.NX

X(1) = XX(1) + DX(LLI+I) _ DEL

EXECbTt AUXLRY. (GOBACK)

LLI = NP2* (LL-2)

TIH PSTEPt FOR I = I,I,I,G.NP2

P(I) = PP(1) + DP(LLI+I) * DEL

EXECUTE DERVIV. ILL}

CONTINUE

DEL = DEL / 6,L)

TtH NEWX, FOR i = I,I,I.G.NX

X(I) = XX(1)+(JX( I)+2.*(DX(I+NX)+DX(I+NX2))+DX{I+NXB}}_DEL

EXECUTE AUXLRY. (GOBACK)

WHENEVER X(3),G.C(16)

N(9) = 0

OTHERWISE

N(9) = MEAS

END OF CONDITIONAL
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NLwr-'

TSTPNG

PRIrlT

GObACK

WRUNG

ERRET

DIAGNL(5)

CRSPRD

GOON

CROSS

TtH NEWPt FOR i = ltltI.G.NP2

P(I) = PP(I) + COP(I) + 2.*(DP(I+NPZ) + DP(I+NP22))

1 + l;P(I+NP23)) * DEL

J = NP + 1

TtH TSTPNG, FOR I = I*J,I,G,NP2

WIR PC1) ,L, 0,0, ToO PRINT

CONTINUE

R

WtR T(1) .L. T(6), F'N

N(25) : N(25) + 1

WIR N(25) .NE. N(ll}, FIN

N(25) : 0

EXECUTE PRINTS.(ERRET)

FtN
EXECUTE REDUCE.(ERRET)

TtO INITAL

PRINT COMMENT $COUN] GREATER THAN 3 IN RUNKUT.$

ERROR RETURN

R

R

R

R

R

SUBROUTINE PRINTS.

INTERNAL FUNCTION

ENIRY TO PRINTb.

W'R N(26) .G. _, F'N

PRINT FORMAT XOUT, T(1),X(1)*C(28),X(2)*C(Z)tX(3)*C(_),

i X(_)*MILE,Y(6I*C(2),PHIDOT*C(2)tY(5)

TiM DIAG, FOR i = I,ltI.G.NP

J = NP*(I-I) + I

DP(1) = SQRT,(P(J),NEGP)

TIO DIAGNL(NP}

P'T SIGMA, ,)p(l)*C(28),DP(2)*C(2),_P(3)*MILE,DP(4)_MILE

VtS SIGMA = $1HO 5E18.8 _$

KL = b

T'O CRSPRD

P'T SIGMA, DP(L)*C(2B),DP(2)*CI2),DP(3)*MILE,DP(4)_MILL '_P{_)

KL = 10

I=1

J = 1

TIH CROSS, FOR K = I,I,K.G.KL

J=J+l

WIR J ,LE, NPt TIO GOON

I=I+l

J=I+l

LL = NP*(I-I) + J

DP = DP(1) * DP(J)
DP(K+NP) = P(LL)/DP

piT CORRE, DP(NP+I)...DP(NP+KL)

VIS CORRE - $1H IOF12.8 /*$

.._,L,(
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Nr uP

(.<iN t ,_L

[NTERP

WOR NP ,F, -*, PRINT COMMENT $ $

F'N

P, [ PNrG, I, P(1),,oP(NP2)

V'b PNLG = $//31H P MATRIX DIAGONAL ELEMEN

1 21m HAS _l-COMr NEGATIVE,

FRRt)_ RFTU_I

E'N

R

R

R

R

R

.sd_ROUI INE AUXLRY

NO, 13t

/29H THE ENTIRE P MATRIX FOLLO_b.

R

R

R SUBROIJTINE REDUCE

R

R

INTERNAL Ft;NCTION

FrO REDUCE,

WtR S-[LPNO .F. O, TIO REDUC

T'H SLTX, FOR I : I.I,I.G,NX

IN]Fr4NAL FIJNCTION

FN II RY TO AtJXLRY.

Y(4) = 1.0 + X(3)

Ylu) = C(5) / Y(Z.i.).p.2

Y(9) = C(7) _ LXP,(C(B);'A(5) )

Y ( 8 ) = bI_I_I(A(_:) )

Y(_) = COS,(X(2))

f(I_.) -- C(25) t (C(24)+C(Zb)_X(3)) _ Y(5)

W'R I(1),LEoTAi (3) .OR. N_-N] oGE, N(3), T'_; li'_[hkP

TAB(1) = lAb(B)

TAb(1) = f At) ( Z+ )

TAb(5) = CT{NENT+I)

t'_EI_l i I : Nr_NT + 2

iAh(q.) = ,Ti, NENT)

T'tJ CuNIFRL

PHIDOI = (IAB(4) - -IAL_I2))/ITAB(3) - IAB(I))

Y(6) = TA_,2) + PHIDO] * (T(]) - TAB(l))

Y(7) = Cos.(Y(6) )

N = C(28) * Ylb) * X(!)

Y(16) = - (.(3) _: R _ X(i)

Y(lu) = C(_) -_ R

Y(iY) = Y(IU) _ Y(7)

Y'(Z) = bii'l.(Y(_))
Y(.i.) = - Y(]O) _ Y(2)

W'R NIZ4)ok.5 .ANU. ,ABso(Y(Z)).L.C(15), EP,I<Ui_ i-_ETURN

WIR N(14),E,4, Y(3) = Y(2) _ PHIDOT / Y(7)

F IN

E'N
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SETX

SETP

REDUC

PC

CPC

D IVRYD

IW,wc

NEWPP4

NEWP_

X(1) = XX(1)

T,H SETP, FOR I = ltltI,G,25

P(1) = PP(1)

pit PTMEt T(1)_ Y(6)*C(2)

VtS PTME = $H,U AT TIME - ,gFIO,5tH,_ PHI = ,tF6,2*$

PRINT COMMENT $ CONDITIONS BEFORE SWITLH,$

T(1) = T(3)

EXECUTE PRINTS.

N(14) = 4

NP = N(14)

NP2 = NP * NP

NP22 = 2 * NP2

NP23 = 3 * NP2

EXECUTE AUXLRY.

A1 = C(13) * Y(16)

A2 = X(1) * Y(17) / Y(16)

XX(1) = 2.0 * A1 / X(1)

XX(4) = A2 + C(12} / A2

XX(2) = - _((_)

XX(3) = C(8) * A1

XX(5) = A1 / Y(5)

AI - 0.0

T'H CPCt FOR I = 1t19I.G.5

DX(1) = 0.0

TIH PC9 FOR J = l,ltJ.G.5

IJ = 5"(I-i) + J

DX(1) : DX(1) + P(IJ) * XX(J)

A1 m A1 + XX(1) * DX(1)

TtH DIVBYDt FOR I = I,I,I.G.5

DX(1) = DX(1) / A1

TtH IMWC, FOR I : I,I,I.G.5

TtH IMWCt FOR J : itlgJeG,5

IJ : 5"(I-]) + J

I)P(IJ) : 0,O

WIR I.E,J. DP(IJ) = 1,0

DP(IJ) = DP(IJ) - DX(1) * XX(J)

TiM NEWPP4, FOR I = ltl,I.G.4

T'H NEWPP4, FOR J = I,I,J.G.4

IJ = 4"(I-1) + J

PP(IJ) = 0.0

T'H NEWPP4, FOR K = ltltK.G.5

IK s 5"(I-I) + K

TtH NEWPP4, FOR L : ItI,L,G,5

KL = 5"(K-1) + L

LJ m 5"(J-I) + L

PP(IJ) : PP(IJ) + DP(IK) * P(KL) * DP(LJ)

T'H NEWP4, FOR I = I,I,I,G,NP2

P(1) : PP(1)

P'T CHANGE, T(1)

V'S CHANGE - $H,OAT TIME : ,tF6,I,H,, THE COVATIANCE MATRIX D
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ERRFTR

MP

MPM

NEwP_

AODRS

ERRE[Z

]IMENSION IS REDUCED TO 4,,/*$

EXECUTE PRINTS-IERRETR)

EXECUTE CDELT,(-1)

F'N

ERROR RETURN

E'N

R

R

R

k

R

SUBROU IINE XPAND

INTERNAL ;UNCTION

EIC) XPANb,

P' f SwlfCm, T(,)

PRINT LOMMFNT $ CONDITIONS bLFORE SWITCH,$

EXECUI_. PRINIS,

NIl4) = 5

NP = N(14)

NP2 = NP * _IP

NPZ2 = 2 * NP2

NPZ3 = 3 * NP2

XX(l) = - 2,0 * Y(SI / X(l)

A1 = X(i) * Y(17) / Y(16)

XX(2) = Y(5) * (A1 + C(12)/A1) / C(1_)

Xx(3) = - C,8) * YIS)

XX(_) = - XX(2)

PP(25) = 0,0
[IH MPM, FOR i = 1,19I,G,_

OX(1) = b°O

i°H MR, FOR J = 1,igJ,G,4

]J = 4"(I-I) + J

IK = 3"(1-1) + J

PP(IK) = PIIJ)

DXII) = uXII) * PIIJ) ¢_ XX(J)

WPi2b) : PP(25) + XXll) * OXII)

TtH NLWPbt FOR I = 1,1,1,G,25

P(I) = PP(I)

TtH ADDRS_ FOR I = 1_1_I,G,4
J = I + 20

P(J) = DX(I)

J = 5 * [
P(J) = DXII)

VI5 SWITCH = $HeOAT TIME = ,,FlOeStH, t

i HAS bELN LXPANDED TO _×5,9/*$

EXECUIE PRINTS°IERRETX)

EXECU'IE (.DFLT,(-1)

F'N

ERROR RETURN

E'N

R

THE CuvA_IANLE MAFRIX
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R

VtS XOUT = $1H F').btVl3o3tFl_+ol_Fl__o,-_Fl_o_t21-1Oe._,V-iZ.h _

V'S PGSKIP _ $//IH SIb,H,DUAL FILTERii_b Oi PERFECi Mi-ASOFKLI.I_-_4

ITS. *$

V IS HEADI:$/// LH S4t4HTIMLS8tI+HVbL.SIOtbH(Ji.,HMASB t_+hAL [,

1 S1195HRANGES6,3HPHIS?t6HPHIDOTS4_3Hi_H_ /lr_ SI+_4t_._LCeS_9

2 5HFPS. S994HDEG,SVt3HFT,SI2tSHN.JV, I.c_6,4HuLG, /_

VtS HEAD2 : $i_0 SIC)_26HERROI_ COVAF_I/_I_(_i- ;.,LTRIXt _' /

i SStH.FIRST LI,_) i<l'.iSESIINATIO_ ERI_L_Ixb Ii_ VELtGA,._,_At/.LI,_.,_

2tRHOe/SbgHoSECuI_J LINE) CORi_LAIIUN L_LI-rICIF_T_ iuF<)o

R

END OF FUNCrION
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MESURE(4)

F_ZERO

R DUAL I iLILi<|NU ul _;Li£_LLiP.;_ASUI_L.r,ILtiI5

R ouBHuU [ INL Df-I£V[ V

EXltR;_L _UN_:[[ON (LL)

PROGNA,q CL;:..';,)i, XIN(5)tA(b)tAX(_JtuA(,_O),i _..(.. ), (_-) 9

1 _PI_U),UP(±OU) 9_(_u)9_(3,,) ,'fifO) t I(k()),L_ _iCO0)

R

i,NILU_I< I,J,Ltd,I_N,IJtIL,LA,LJ_JL_LL_LLA,LLP,;,_ ,:_: _

DIMENbION _(25),FlZS)oH(l_)

R

ENIRY ]u DERV|V,

W'N LL ,G. Ot iIO LNi_Y

NF' = i_(l_)

QI = ioO I _(Z._)

tiN

NP = N(I_)

NF'L = NP _ ,':P

Xl = _IZ_) _ X_i)

Fv = VllO)

F_ = Ylif)

Y(21} : Y(_) _ _(221

Y(2_) : - f / C(28)

Y(23) = _(2_) :, Y(8)

SUM1 = Y(Z1) * Y(23)

SUMZ = Y(Z2) * Y(24)
LLX = 4*(LLI-I)

DXiLLX+I) = FV + SUMI

DXILLX+4) : Xl _ Y(9) / (Y(4) _ C(o))
DX(LLX+2) = FG + DA(LLX+_) + El31) + bUM2

DX(LLX+3) = X1 _ Y(8) / C(6)

A = (Y(22) - 2,0"Y(24)) / f(4)

Q2 = YIIb)_Y(Zu)*I.AUS.(DX(LLX+5)) + ill*))

I'O MESURE(NP)

P i,iArR|X Ib k-D1M_NblUNAL

T_H _ZERO, FOR I = I,I,I.G.16

F(1) = O.O

COMFUIL F MATRIX

FI9) = DX(LLX+5) I Xli)

F(10) = DXIULX+_) _ Y(#)

F(13) = DX(LLX+#) / X(ll
F(I_) = - DXILLX+3) / YI4)
F(15) = - DX(LLX+#) / Y(4)

F(2) = (SUM2 + FG) _ X(1)

F(5) = (Y(21) - 2,0_Y(23)) / YI#)
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HQH

MESURE(5_

FSZERO

F(4) = - FG * X(1)

F(5) = F(13} - (FG + SUM2) / X(1)

F(6) = F(I_) - DX(LLX+I) / X(1)

F(7} = A + F(I_)

F(8) = FV / X(1)

W'R N(9) ,E, O, 1'0 FINDDP

A1 = FG / FV

A2 = X(1) * A1

A3 = (A2 - C(lz)/A2) / C(13)
A33 = (A2 + C(i2)/A2) / C(13)

A# = DX(LLX+I) / X(1)

R

R FORM H MATRIX

R

H = (A2 + 1.0/LZ) / (C(II) - C(1O))

H(1) = Y(5)_IA_'3_(FG+SUM2)+C(8) *SX(LLA+_)-_°_Ae)/All}

HI#) = - Y(_)_(AJ_Y(3) + A3_*t(_) + _°O_r_l
H(2) = - H(_) t y(b)_(2°0_bbi,_ + ,..(ol_,r(z_ * ,._ ....U. Z/A(±) )

H(3) = Y(5)*(2°w(F(3) -Q(8)_Pv)/X_Z)-''5_(A-_(°)':r_))

R

R FORM H'Q-t H PRODUCT

R

Q2 = i.0 / Q2

[IH HQH, FOR I = I,I,I.G.4

T'H HQH, FOR J = I,I,J.G.4

IJ = 4-(I-i) + J

hllJ) : H(I) * HIJ) * QZ
H = H * H * Q1

E(6) = E(6) + H

E(8) : F(8) - H

E(14) : E(14) - H

E(16) : E(lo} + H

TtO F INDDP

R
R P MATRIX IS 5-DIMENSIONAL

R

T'H FSZERO, FOR I = 1,1,1.G.25

F(1) = 0.0

F(11) = DX(LLX+3) / X(I}

F(12) = DX(LLX+4} * Y(4)

F(16} = DX(LLX+4) / X(1)

F(17) = - DX(LLX+3) / Y(4)

F(I8) = - DX(LLX+4) / Y(4)

F(2) = (SUM2 + FG) * X(1)

F(3) = (Y(21) - 2,0"Y(23)) / Y(_)

F(_) = - FG * X(l)

F(6) = F(16} - {FG+SUM2) / X(1}

F(7) = F(17} - DXILLX+I} / X(1)
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F(8) = A + F(18)

F(9) = FV / X(1)

F(25) : (.(8) * .ABb.(DX(LLX+3))
R

R

WIR N(9) ,E, O, ]IU FINDDP

H(1 = 2,0 * FV / X(1)

H(2 = - FG * X(l)

H(3 = C(_,) * FV

H(4 = - H(2)

H(b = FV / Y(5)

H(6 = 2 * =G / X(1)
H(7 - FV / X(L)

H(8 = C(8) * FG

H(9 = - H(7)

H(IO) = FG / Y(5)

R1 = FV * FV * C(#O)

R2 = rV * FG * C(41)

R3 = rO*FL_*L_(43) + C(42)*Y(I).P.2
AI = RI * R3 - R2 * R2

A2 = Rl

R1 = R3 / A1

R2 = - R2 / A1

R3 = A2 I AI

T'H HRM, FOR I = l,l,I.G.5

T'H HRH, FOR J = l,l,J.G._)

IJ = L_*(I-i) + J

E(IJ} = H(I)*(RI*H(J)+RZ.f,(j+b))+H(I+_).(R_xr._(j)+I_H|j+_) )

R

R

R

COMPUTE DERIVATIVE OF P MATRIX

LLP = NP2*(LL-I)

T'H PL)OII, FOR I = l,l,liG,NP

M = NP*( I-i )

T'H PDOTI, FOR J : I,I,J,G,NP

LM : NP*(J-1)

iJ = M + J + LLP

DP( I J) = OeO

TIH PDOT1, FOR L = 1,1,L.G.NP
IL = M + L

LJ = NP*(L-1) + J

JL = LM + L

DP(IJ) = UP(Ijl + r(IL)*P(LJ) + P(IL)*FIJL)

WIR NP.E.5, DP(LLP+25) = DP(LLP+25) + Q2
WIR N(9) ,E,, O, FIN

FINAL DEL_IVATIVL OF P MATRIX

T'H NLWDP, FOR I = I,I,I,G,NP
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N_WDP
R

R

T'H NEWDPt FOR J m itloJ,G,NP

IJ s NP*( I"i} + J + LLP

TIH NEWDPt FOR L " ItltLeG.NP

IL t NP*(I"I) + L

TIH NEWDPo FOR M " itltM,G,NP

LM " NP*(_.-I) + M

LJ " NP*iM-I) + J

DP(IJ) - DP(IJ) - P(IL) . E(LM) _ P(LJ)

FIN
EIN
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R ROUIINL FON LUMt'UTINb IIML SILP
R

EXTERNAL FUNCTION (LL)

PROGRAM COM,4ON XIN(5)gX(5)tXX(_)gDX(zO)tPlr,_(z_),F(z_)t

I DP(2b)gDP(IOO)tC(DO),N('30),Y(30)tTiIO)tCIilO00)
R

DIMENSION Z(50), Dr(50)
INTEbLR I,LLgN

EIO CDELT,

VoS Z(I) = _0o'I180,120o,140,,230,,4_0,,i0_,0,

V'S D[(i)

W'R LL ,NEe O,

I = i

PRINi COMMENT

READ AND PRINT

T(2) = DT(I}

pt T CHbDT, I t

WIR T(1) ,LE,

I = I + 1

T(2) = DT(I}

piT CHGDI, I,

V' S L_C:D T

T'O ENTRY

E'N

= ,01,,I,,05,,i,,2,,5,,5

Too ENTRY

I(2}

/(I), _-'N

T(2)

= S/H, i = ,,IZtH,t DT = ,,Fg,o,/_

NEW VALUES OF Z AND U[ FOLLOW $

DATA
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APPENDIX B

DIGITAL COMPUTER PROGRAM FOR COMPUTATION

OF INITIAL COVARIANCE MATRIX



......f!llJ_t.._C_Var__aad .....................
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COVAR HArt 08/18 !fl55.1

: 1- -5.83
:? 2..':; R,

......................... :r __ _
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.................. :d_

e. = 0.017h53292

.........................VEL =-3£8hI,-0 ...........................................................................
,AD = h_79._

EnAn -.--3-S.K&../
n/_i'-I = -6.0 • C

...............-.........cs -_no.,. (_G_.) .............................................................................
SI'l= ,';,It.?. (_AH)

.........................C,/------.-/]-,&2

t4V = 0.0

"Dt.,.... -___fl._&......................................................................................
t_V2 = 0.0

.........................t1_2 -=--0.-0 ................................................................................._.

H!'2 = 0.0
; 1,rL2.__=__fl.rl
i_V¢, = 0.0

........................... t, './H-___ 0_._0._.................................................................................
!_VP = 0.0

........................._CtL_-__O ._O
HO.R = 0.0

I'111R__._0 ,; n
T'H LOOP, FOR 1 = 1,101.P_.50 i

. I
IZVH-----.V_.(-I.-)--/--VEL ......................................................................
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_R = r:(1) / RAP
?,I.-=_.SnRT,.(I,n + RH*(RII-2,O)__+_.RR *_RR_- .......................................

$2 = SNRT.(I.t'I - 2.0*(SN*RVI! + OS*RVR) 4. RVH*RVtI+RVR*RVR)
........................ V(I).= VEI. * (1.0-.':;2) ......................................

,o.,l(I) = RAP * (1.r)-_1)
RDOTV =-. ( 1.0 - Rt-I) • ( SH - RVIt ) - .( CS__.-__.I..LVP...)__,__PJ'L..............................
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R.(J-)--=---E.I_A r_ .,. RI'L_/__(_Z.. 0.- RH-)
_'IV= NV ..o. V(I)

......................Hn__=__l'_ + n.( I ) .................................................................

t,,._ = r,o4 + H(I)
---LOOR .............t4R =. t._R+ P,(I) .................................

rsV = fW * 0.1

LIP-.-.=--H_--*-.-C-.'I...............................

!Ill = t,',o • C]

l......................I'_P,= t.IR* C1 ...........................
T°H Lc)OP!, FnP, I = 1,1,1.P,.50

.......................v(1)_ = V(I) - r.1'.t .....................................................
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...................... t4TI2= till2 -÷-l-I( )*!I( J )..............................................................
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_,4nt_ = [1_11 + _( )*I!( I )
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LOOP1 t,l(_ = r.lf(R + II( )*R(I)
pt "r ur'^n

--T--"TT :r-If -

VIS IIEAD = _11/£1I'l,22HSTATISTICAL ERROR DATA//
--.;.. ...............................................
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_"_q = SnRT.(f_R2.C1)
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#rT--_. _IT.__-PIV_ ;,,.C 1-;HVHWR_;l_F.ITI;TIO.Ff*CI-;IqI_,R*_137THR*CI
V_S CROSS = ._/._SH CROSS PROI_IICTS (VG,VH,VR,GH,_R,HR)

......................:I- I_I:ln.% ,, ....................................................................

m.PO(1) = lUVn,Cl/MV/Hn
RII(TC_.-)=--_BV_F,_.-If:_TIf TIT
Rl4f_(",).= HVP,,C., ,1,1_,'VIMR

........ T.............. nHn-(-_ )--_--_nF_-.Cl-I _n/_I r .......................................... T................
RHO(5) - HnR,C1/r_.nlMR

pOT CORRE, RHO(1),,,RI.IO(I_)
V°S CORRE = $/2._H t;nRv{ELATION--COEFPIC,PENTS"Y6F"I-O%_-$
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Statistical Analysis of Initial Estlmatlon Errors
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